

CC ALGEBRA
 CHAPTER 2 FUNCTIONS \& GRAPHS

- SECTION 2.5 - TRANSFORMATIONS OF FUNCTIONS

Objectives:

- Recognize the graph of common functions
- Use vertical shifts to graph functions
- Use horizontal shifts to graph functions
- Use reflections to graph functions
- Use vertical stretching and compression to graph functions
- Use horizontal stretching and compression to graph functions
- Graph functions involving a sequence of transformations

The Average Rate of Change of a Function

Let $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ be distinct points on the graph of a function f. (See Figure 2.44.) The average rate of change of \boldsymbol{f} from x_{1} to x_{2} is

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

$f(x)=x^{2}$
$\underset{1 \rightarrow 2}{\operatorname{AROC}} \quad \frac{1^{2}-2^{2}}{1-2}=1$
$\underset{1 \rightarrow 4}{\operatorname{AROC}} \frac{4^{2}-1^{2}}{4-1}=5$

* $\begin{array}{ll} & A R O C \\ -2 \rightarrow 1 & \frac{1^{2}-(-2)^{2}}{1-(-2)}=-1\end{array}$

Find the secant for *

$$
\begin{aligned}
y-1 & =-1(x-1) \\
y & =-x+2
\end{aligned}
$$

$$
\begin{gathered}
f(x)=-\frac{1}{3} \\
x^{2} \\
R G x \\
D \quad 1
\end{gathered}
$$

$$
\begin{array}{ll}
D & 1 \\
L & 3
\end{array}
$$

$$
\text { VC } \frac{1}{3}
$$

$$
\begin{array}{l|l}
(-x, y) & (x, y) \\
& (x, y)
\end{array}
$$

- Domain: $(-\infty, \infty)$
- Range: the single number c
- Constant on $(-\infty, \infty)$
- Even function

- Domain: $(-\infty, \infty)$
- Range: $(-\infty, \infty)$
- Increasing on $(-\infty, \infty)$
- Odd function

Standard Quadratic Function

Square Root Function

- Domain: $(-\infty, \infty)$
- Range: $[0, \infty)$
- Decreasing on $(-\infty, 0)$
and increasing on $(0, \infty)$
- Even function

- Domain: $[0, \infty)$
- Range: $[0, \infty)$
- Increasing on $(0, \infty)$
- Neither even nor odd

Standard Cubic Function

- Domain: $(-\infty, \infty)$
- Range: $(-\infty, \infty)$
- Increasing on $(-\infty, \infty)$
- Odd function

Domain: $(-\infty, \infty)$

- Range: $[0, \infty)$
- Decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$
- Even function

Cube Root Function

- Domain: $(-\infty, \infty)$
- Range: $(-\infty, \infty)$
- Increasing on $(-\infty, \infty)$
- Odd function

Vertical Shifts

Let f be a function and c a positive real number.

- The graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted c units vertically upward.
- The graph of $y=f(x)-c$ is the graph of $y=f(x)$ shifted c units
 vertically downward.

Horizontal Shifts

Let f be a function and c a positive real number.

- The graph of $y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left c units.
- The graph of $y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right c units.

Vertically Stretching and Shrinking Graphs
Let f be a function and c a positive real number.

- If $c>1$, the graph of $y=c f(x)$ is the graph of $y=f(x)$ vertically stretched by multiplying each of its y-coordinates by c.
- If $0<c<1$, the graph of $y=c f(x)$ is the graph of $y=f(x)$ vertically shrunk by multiplying each of its y-coordinates by c.

Stretching : $c>1 \quad$ Shrinking : $0<c<1$

Horizontally Stretching and Shrinking Graphs

Let f be a function and c a positive real number.

- If $c>1$, the graph of $y=f(c x)$ is the graph of $y=f(x)$ horizontally shrunk by dividing each of its x-coordinates by c.
- If $0<c<1$, the graph of $y=f(c x)$ is the graph of $y=f(x)$ horizontally stretched by dividing each of its x-coordinates by c.

Shrinking : $c>1$

Stretching : $0<c<1$

Changes in the Equation of $y=f(x)$

Vertical shifts
$y=f(x)+c$
$y=f(x)-c$
Horizontal shifts
$y=f(x+c)$
$y=f(x-c)$
Reflection about the x-axis
$y=-f(x)$
Reflection about the y-axis
$y=f(-x)$
Vertical stretching or shrinking

$$
y=c f(x), c>1
$$

$$
y=c f(x), 0<c<1
$$

Horizontal stretching or shrinking
$y=f(c x), c>1$
$y=f(c x), 0<c<1$

Draw the Graph of f and:

Raise the graph of f by c units.
Lower the graph of f by c units.

Shift the graph of f to the left c units. Shift the graph of f to the right c units. Reflect the graph of f about the x-axis.

Reflect the graph of f about the y-axis.

Multiply each y-coordinate of $y=f(x)$ by c, vertically stretching the graph of f.
Multiply each y-coordinate of $y=f(x)$ by c, vertically shrinking the graph of f.

Divide each x-coordinate of $y=f(x)$ by c, horizontally shrinking the graph of f.
Divide each x-coordinate of $y=f(x)$ by c, horizontally stretching the graph of f.
c is added to $f(x)$.
c is subtracted from $f(x)$.
x is replaced with $x+c$.
x is replaced with $x-c$.
$f(x)$ is multiplied by -1 .
x is replaced with $-x$.
$f(x)$ is multiplied by $c, c>1$.
$f(x)$ is multiplied by $c, 0<c<1$.
x is replaced with $c x, c>1$.
x is replaced with $c x, 0<c<1$.

Order of Transformations

A function involving more than one transformation can be graphed by performing transformations in the following order:

1. Horizontal shifting
2. Stretching or shrinking
3. Reflecting
4. Vertical shifting

