BOARD NOTES

24 SEPTEMBER 2018

 \square

 \mathbf{a}

Q

B

 \bigcirc

 \mathbb{O}

Q

CC ALGEBRA CHAPTER 2 FUNCTIONS & GRAPHS

 SECTION 2.5 - TRANSFORMATIONS OF FUNCTIONS

Objectives:

- Recognize the graph of common functions
- Use vertical shifts to graph functions
- Use horizontal shifts to graph functions
- Use reflections to graph functions
- Use vertical stretching and compression to graph functions
- Use horizontal stretching and compression to graph functions
- Graph functions involving a sequence of transformations

The Average Rate of Change of a Function

Ó

Let $(x_1, f(x_1))$ and $(x_2, f(x_2))$ be distinct points on the graph of a function f. (See Figure 2.44.) The average rate of change of f from x_1 to x_2 is

9

 \bigcirc

 \bigcirc

Constant Function

Identity Function

Absolute Value Function

- Domain: (-∞, ∞)
- Range: the single number c
- Constant on (-∞, ∞)
- · Even function

- Range: (-∞, ∞)
- Increasing on (-∞, ∞)

Odd function

- Decreasing on (-∞, 0) and increasing on $(0, \infty)$
- Even function

Cube Root Function

Vertical Shifts

Q

Let f be a function and c a positive real number.

- The graph of
 y = f(x) + c is the
 graph of y = f(x)
 shifted c units
 vertically upward.
- The graph of y = f(x) - c is the graph of y = f(x) shifted c units vertically downward.

y = f(x) c y = f(x) - c

Horizontal Shifts

Q

Let f be a function and c a positive real number.

- The graph of y = f(x + c) is the graph of y = f(x) shifted to the left c units.
- The graph of y = f(x c) is the graph of y = f(x) shifted to the right c units.

Vertically Stretching and Shrinking Graphs

0

Let f be a function and c a positive real number.

- If c > 1, the graph of y = cf(x) is the graph of y = f(x) vertically stretched by multiplying each of its y-coordinates by c.
- If 0 < c < 1, the graph of y = cf(x) is the graph of y = f(x) vertically shrunk by multiplying each of its y-coordinates by c.

Horizontally Stretching and Shrinking Graphs

Let f be a function and c a positive real number.

- If c > 1, the graph of y = f(cx) is the graph of y = f(x) horizontally shrunk by dividing each of its x-coordinates by c.
- If 0 < c < 1, the graph of y = f(cx) is the graph of y = f(x) horizontally stretched by dividing each of its x-coordinates by c.

16 ()			
	To Graph:	Draw the Graph of f and:	Changes in the Equation
2	Vertical shifts		
	y = f(x) + c	Raise the graph of f by c units.	c is added to $f(x)$.
	y = f(x) - c	Lower the graph of f by c units.	c is subtracted from $f(x)$
	Horizontal shifts		
	y = f(x + c)	Shift the graph of f to the left c units.	x is replaced with $x +$
	y = f(x - c)	Shift the graph of f to the right c units.	x is replaced with $x -$
	Reflection about the x-axis	Reflect the graph of f about the x-axis.	f(x) is multiplied by –
	y = -f(x)		
	Reflection about the y-axis y = f(-x)	Reflect the graph of f about the y-axis.	x is replaced with $-x$.
٢	Vertical stretching or shrinking		
	y = cf(x), c > 1	Multiply each y-coordinate of $y = f(x)$ by c, vertically stretching the graph of f.	f(x) is multiplied by c ,
	y = cf(x), 0 < c < 1	Multiply each y-coordinate of $y = f(x)$ by c, vertically shrinking the graph of f.	f(x) is multiplied by c ,
	Horizontal stretching or shrinking		
	y = f(cx), c > 1	Divide each x-coordinate of $y = f(x)$ by c, horizontally shrinking the graph of f.	x is replaced with cx, c
	y = f(cx), 0 < c < 1	Divide each x-coordinate of $y = f(x)$ by c, horizontally stretching the graph of f.	x is replaced with cx, 0

f(x).

⊦ *c*. - c. -1.

c, c > 1.

c, 0 < c < 1.

c > 1.

0 < c < 1.

Order of Transformations

A function involving more than one transformation can be graphed by performing transformations in the following order:

- Horizontal shifting
- 3. Reflecting

- 2. Stretching or shrinking
- Vertical shifting

 \mathcal{O} y = f(x) h(x+c) MOVES LEFT VS c>1 g(x) + C MOVES UP L(X-C) MOVES RIGHT VC okcki g(x)-c MOVES DOWN cfw) g(x) = |x+2|h(x)= x2-2 HS occi -f(x) RO X-AXIS HC C>1 f(cx) F(-x) RO y-Axis

SUBRENDENT SCROOL DISTRICT OR 1926

6