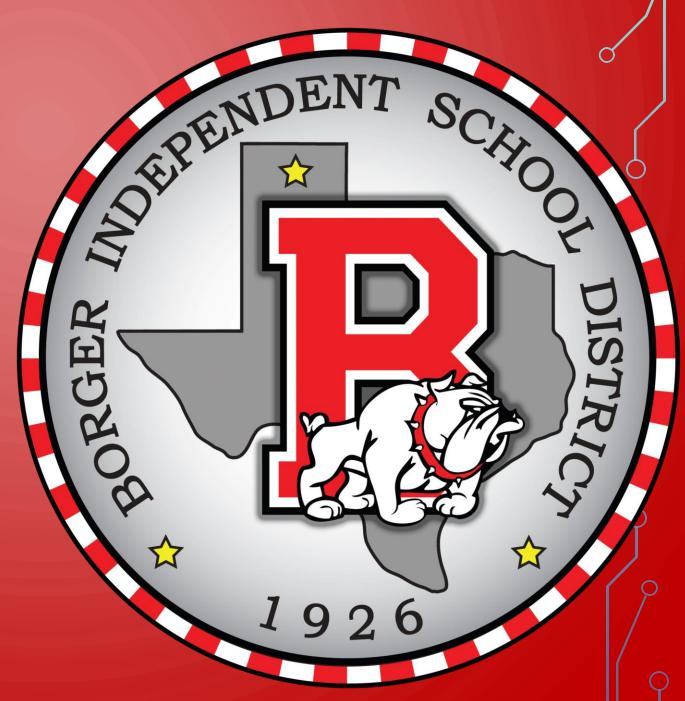


26 SEPTEMBER 2018

 \square

 \mathbf{a}


Q

B

 \bigcirc

 \mathbb{O}

Q

CC PRECALCULUS CHAPTER 3 – LINEAR AND QUADRATIC FUNCTIONS

SECTION 3.3 - QUADRATIC
FUNCTIONS AND THEIR PROPERTIES

Objectives:

- Graph a quadratic function using transformations
- Identify the Vertex and Axis of Symmetry of a quadratic function
- Graph a quadratic using its vertex, axis of symmetry, and intercepts
- Find a quadratic function given its vertex and one other point
- Find the Maximum or Minimum value of a quadratic function

ρ

 \bigcirc

Ó

 \frown

 \bigcirc

A quadratic function is a function of the form

$$f(x) = ax^2 + bx + c$$

p

where a, b, and c are real numbers and $a \neq 0$. The domain of a quadratic function is the set of all real numbers.

	Price <i>p</i> per Calculator (in dollars)	Number of Calculators, x	800,000 700,000
	60	12,000	600,000
	65	11,250	500,000
	70	10,500	400,000
	75	9,750	300,000 200,000
9	80	9,000	100,000
9	85	8,250	
0	90	7,500	0 14 28 42 56 70 84 98 112 126 140

g(x) = ax + b $f(x) = ax^2 + bx + c$ 070 $k(x) = 2x^2 + 8x + 5$ VERTEX : (-2,-3) X = -ZX= 21,000 - 150p D: 0 ≤ p ≤ 140 × mm: -4±+6 R= xp = (21,000-150p)p - b + - b2-4ac Za $= 21000p - 150p^2$ VERTEX (1,-5) m(x)=a(x-1)=5 Y-INT 3 $3 = \alpha(0-1)^2 - 5$ m(x)=8(x-1)2-5 3= 9-5 Q=8

 \mathcal{D}

6

(1)

If
$$h = -\frac{b}{2a}$$
 and $k = \frac{4ac - b^2}{4a}$, then

$$f(x) = ax^{2} + bx + c = a(x - h)^{2} + k$$

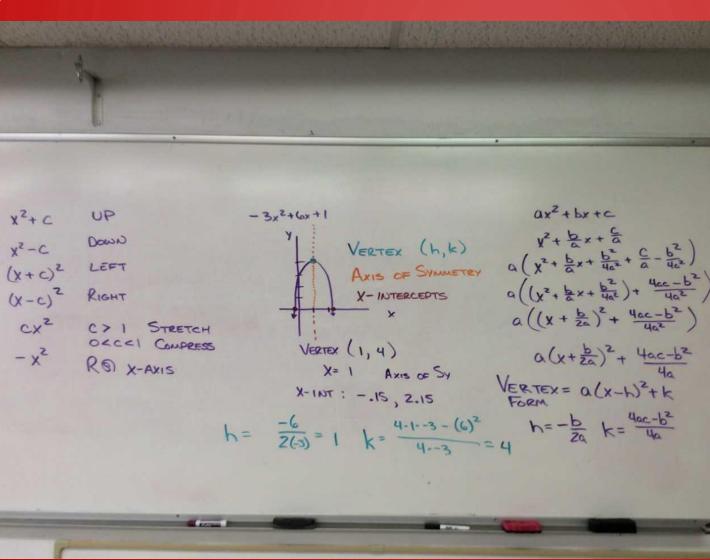
The graph of $f(x) = a(x - h)^2 + k$ is the parabola $y = ax^2$ shifted horizontally h units (replace x by x - h) and vertically k units (add k). As a result, the vertex is at (h, k), and the graph opens up if a > 0 and down if a < 0. The axis of symmetry is the vertical line x = h.

Properties of the Graph of a Quadratic Function

$$f(x) = ax^2 + bx + c \qquad a \neq 0$$

Vertex =
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
 Axis of symmetry: the vertical line $x = -\frac{b}{2a}$ (2)

Parabola opens up if a > 0; the vertex is a minimum point. Parabola opens down if a < 0; the vertex is a maximum point.



If the vertex (h, k) and one additional point on the graph of a quadratic function $f(x) = ax^2 + bx + c$, $a \neq 0$, are known, then

$$f(x) = a(x - h)^2 + k$$
 (3)

can be used to obtain the quadratic function.

The x-Intercepts of a Quadratic Function

- If the discriminant b² 4ac > 0, the graph of f(x) = ax² + bx + c has two distinct x-intercepts so it crosses the x-axis in two places.
- 2. If the discriminant b² 4ac = 0, the graph of f(x) = ax² + bx + c has one x-intercept so it touches the x-axis at its vertex.
- 3. If the discriminant $b^2 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercepts so it does not cross or touch the x-axis.

SUMMARY

Steps for Graphing a Quadratic Function $f(x) = ax^2 + bx + c, a \neq 0$

Option 1

0

STEP 1: Complete the square in x to write the quadratic function in the form $f(x) = a(x - h)^2 + k$. **STEP 2:** Graph the function in stages using transformations.

Option 2

STEP 1: Determine whether the parabola opens up (a > 0) or down (a < 0).

STEP 2: Determine the vertex
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

STEP 3: Determine the axis of symmetry, $x = -\frac{b}{2a}$.

STEP 4: Determine the y-intercept, f(0), and the x-intercepts, if any.

(a) If $b^2 - 4ac > 0$, the graph of the quadratic function has two *x*-intercepts, which are found by solving the equation $ax^2 + bx + c = 0$.

(b) If
$$b^2 - 4ac = 0$$
, the vertex is the x-intercept

STEP 5: Determine an additional point by using the *y*-intercept and the axis of symmetry. **STEP 6:** Plot the points and draw the graph.