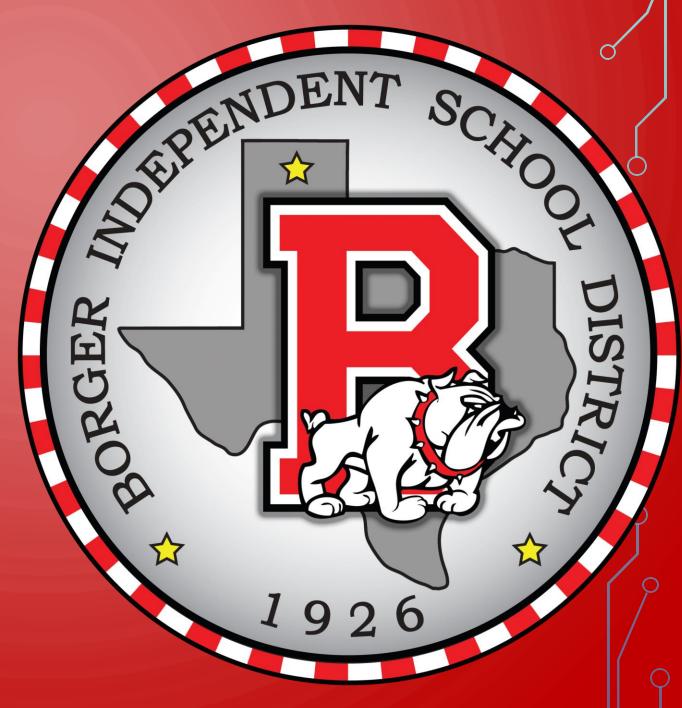
BOARD NOTES

4 OCTOBER 2018

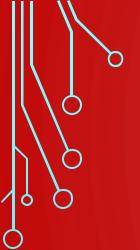


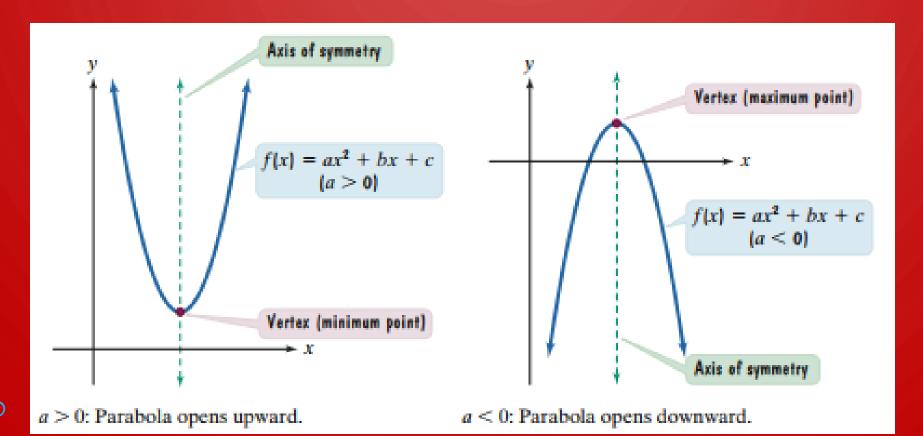
CC ALGEBRA CHAPTER 3 – POLYNOMIAL AND RATIONAL FUNCTION

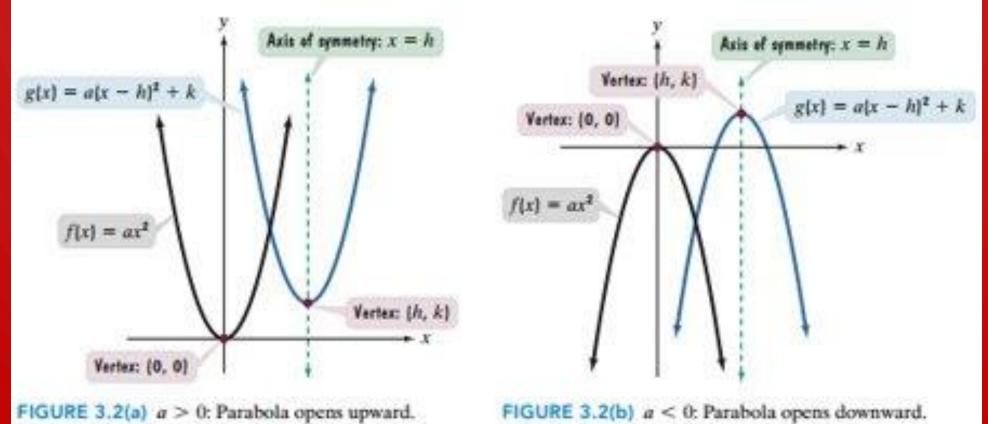
• SECTION 3.1 - QUADRATIC FUNCTIONS

Objectives:

- Recognize the characteristics of parabolas
- Graph parabolas
- Determine a quadratic function's minimum or maximum value
- Solve problems involving a quadratic function's minimum or maximum value







The Standard Form of a Quadratic Function

The quadratic function

$$f(x) = a(x - h)^2 + k, \qquad a \neq 0$$

is in **standard form**. The graph of f is a parabola whose vertex is the point (h, k). The parabola is symmetric with respect to the line x = h. If a > 0, the parabola opens upward; if a < 0, the parabola opens downward.

The Vertex of a Parabola Whose Equation Is $f(x) = ax^2 + bx + c$

Consider the parabola defined by the quadratic function $f(x) = ax^2 + bx + c$.

The parabola's vertex is $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$. The x-coordinate is $-\frac{b}{2a}$. The

y-coordinate is found by substituting the x-coordinate into the parabola's equation and evaluating the function at this value of x.

$$f(x) = 0$$
 $Z \in RO POLY NO DEGREE$ $g(x) = (X+3)^2 + 1$
 $f(x) = a_0 x^0 = a_0$ $Constant$ O $V (-3,1)$
 $f(x) = ax + a_0$ $Linear$ I $V = a_1 x^2 + ax + a_0$ $Constant$ Con

$$\frac{b}{a}^{2}$$

$$\frac{b}{a}^{2}$$

$$\frac{b}{a}^{2}$$

$$\frac{b}{a}^{2}$$

$$\frac{b}{a}^{2}$$

$$\frac{d}{a}^{2}$$

Graphing Quadratic Functions with Equations in Standard Form

To graph $f(x) = a(x - h)^2 + k$,

- 1. Determine whether the parabola opens upward or downward. If a > 0, it opens upward. If a < 0, it opens downward.
- **2.** Determine the vertex of the parabola. The vertex is (h, k).
- Find any x-intercepts by solving f(x) = 0. The function's real zeros are the x-intercepts.
- **4.** Find the *y*-intercept by computing *f*(0).
- 5. Plot the intercepts, the vertex, and additional points as necessary. Connect these points with a smooth curve that is shaped like a bowl or an inverted bowl.

Graphing Quadratic Functions with Equations in the Form $f(x) = ax^2 + bx + c$

To graph $f(x) = ax^2 + bx + c$,

- 1. Determine whether the parabola opens upward or downward. If a > 0, it opens upward. If a < 0, it opens downward.
- **2.** Determine the vertex of the parabola. The vertex is $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
- 3. Find any x-intercepts by solving f(x) = 0. The real solutions of $ax^2 + bx + c = 0$ are the x-intercepts.
- 4. Find the y-intercept by computing f(0). Because f(0) = c (the constant term in the function's equation), the y-intercept is c and the parabola passes through (0, c).
- Plot the intercepts, the vertex, and additional points as necessary. Connect these points with a smooth curve.

Minimum and Maximum: Quadratic Functions

Consider the quadratic function $f(x) = ax^2 + bx + c$.

- 1. If a > 0, then f has a minimum that occurs at $x = -\frac{b}{2a}$. This minimum value is $f\left(-\frac{b}{2a}\right)$.
- 2. If a < 0, then f has a maximum that occurs at $x = -\frac{b}{2a}$. This maximum value is $f\left(-\frac{b}{2a}\right)$.

In each case, the value of x gives the location of the minimum or maximum value. The value of y, or $f\left(-\frac{b}{2a}\right)$, gives that minimum or maximum value.

STANDARD FORM
$$f(x) = a(x-h)^2 + k$$

0>0

040

GENERAL FORM

$$g(x) = -2(x-3)^2 + 8$$

OPEN DOWN

$$f(x) = \underline{a}x^2 + bx + c$$

$$VERTEX (3,8)$$

$$VERTEX (5,8)$$

VERTEX (5,8)

VERTEX (5,8