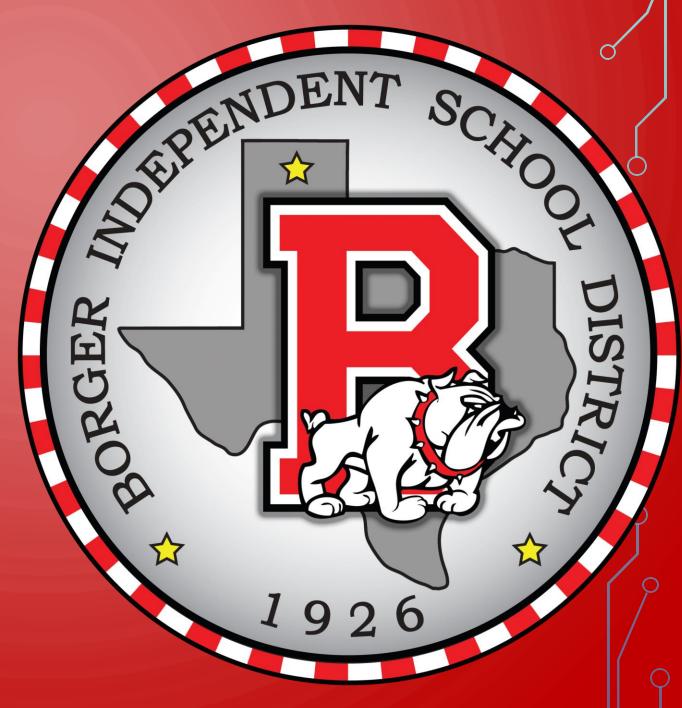
BOARD NOTES

4 OCTOBER 2018



CC PRECALCULUS CHAPTER 4 — POLYNOMIAL AND RATIONAL FUNCTION

• SECTION 4.1 - POLYNOMIAL FUNCTIONS AND MODELS

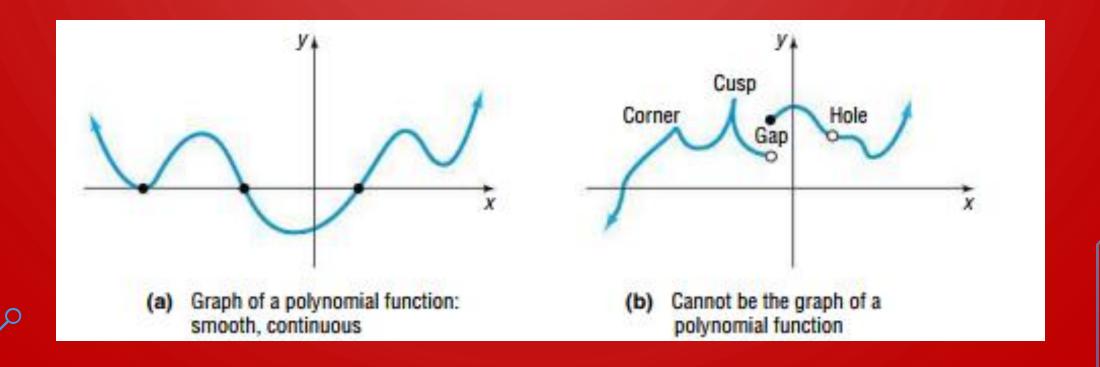
- Identify polynomial functions and their degree
- Graph polynomial functions using transformations
- Know properties of the graph of a polynomial function
- Analyze the graph of a polynomial function
- Build cubic models from data

A polynomial function in one variable is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (1)

where $a_n, a_{n-1}, \ldots, a_1, a_0$ are constants, called the **coefficients** of the polynomial, $n \ge 0$ is an integer, and x is the variable. If $a_n \ne 0$, it is called the **leading coefficient**, and n is the **degree** of the polynomial.

The domain of a polynomial function is the set of all real numbers.



$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

$$Fower$$

$$Fowerion$$

$$Where $a_n \cdots a_n \in \mathbb{R}$

$$f(x) = a_1 x^n$$

$$Fowerion$$$$

IF an \$0 IT IS CALLED LEADING COEFFICIENT

N IS DEGREE OF POLY

Degree	Form	Name	Graph
No degree	f(x) = 0	Zero function	The x-axis
0	$f(x) = a_0, a_0 \neq 0$	Constant function	Horizontal line with y-intercept a ₀
1	$f(x) = a_1 x + a_0, a_1 \neq 0$	Linear function	Nonvertical, nonhorizontal line with slope a_1 and y-intercept a_0
2	$f(x) = a_2 x^2 + a_1 x + a_0, a_2 \neq 0$	Quadratic function	Parabola: graph opens up if $a_2 > 0$; graph opens down if $a_2 < 0$

A power function of degree n is a monomial function of the form

$$f(x) = ax^n (2)$$

where a is a real number, $a \neq 0$, and n > 0 is an integer.

	3 0		
f(x)=0 No DEGREE	ZERO POLY	$5x^3 - \frac{1}{4}x^2 - 9$	3
$g(x) = a_0 x^0 = a_0$	CONSTANT	x + z - 3x4	4
h(x) = ax + a.	LINEAR	$\frac{1}{x^2-2}$	No B/C
$k(x) = a_2 x^2 + a_1 x + a_2 \qquad 2$	QUADRATIC	X3-1	RATIONAL
$j(x) = a_3 x^3 + a_2 x^2 + ax + a_0 3$	Cubic	$(a_{\mu})_{\nu} = a_{\mu\nu}$ $a_{\mu} = a_{\mu+\nu} - S^{x} = (x-l)_{S}$	5
			100

Q

- 1. f is an even function, so its graph is symmetric with respect to the y-axis.
- The domain is the set of all real numbers. The range is the set of nonnegative real numbers.
- 3. The graph always contains the points (-1, 1), (0, 0), and (1, 1).
- 4. As the exponent n increases in magnitude, the graph is steeper when x < −1 or x > 1; but for x near the origin, the graph tends to flatten out and lie closer to the x-axis.

Properties of Power Functions, $f(x) = x^n$, n is a Positive Odd Integer

- 1. f is an odd function, so its graph is symmetric with respect to the origin.
- The domain and the range are the set of all real numbers.
- 3. The graph always contains the points (-1, -1), (0, 0), and (1, 1).
- **4.** As the exponent n increases in magnitude, the graph is steeper when x < -1 or x > 1; but for x near the origin, the graph tends to flatten out and lie closer to the x-axis.

If f is a function and r is a real number for which f(r) = 0, then r is called a **real zero** of f.

As a consequence of this definition, the following statements are equivalent.

- 1. r is a real zero of a polynomial function f.
- r is an x-intercept of the graph of f.
- x − r is a factor of f.
- **4.** r is a solution to the equation f(x) = 0.

So the real zeros of a polynomial function are the x-intercepts of its graph, and they are found by solving the equation f(x) = 0.

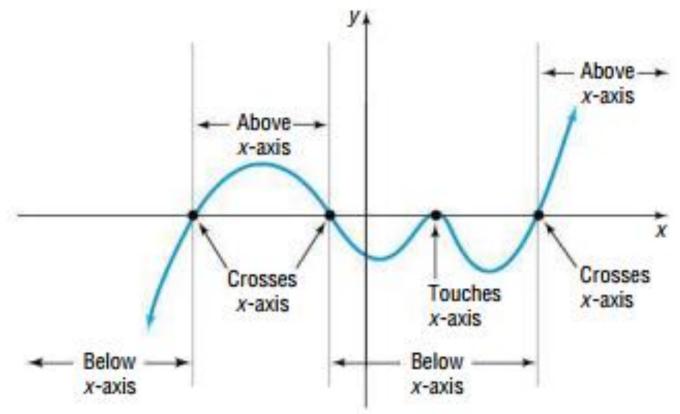


Figure 9 Graph of a polynomial function