

9 OCTOBER 2018

 \square

 \mathbf{a}

Q

ററ്

B

 \mathbb{O}

Q

CC ALGEBRA CHAPTER 3 – POLYNOMIAL AND RATIONAL FUNCTIONS

SECTION 3.2 - POLYNOMIAL
FUNCTIONS AND THEIR GRAPHS

Objectives:

- Identitfy polynomial functions
- Recognize characteristics of polynomial functions
- Determine the end behavior
- Use factoring to find zeros of polynomial functions
- Identitfy zeros and their multiplicities
- Use the Intermediate Value Theorem
- Understand the relationship between degree and turning points
- Graph polynomial functions

A polynomial function in one variable is a function of the form

Q

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_n, a_{n-1}, \ldots, a_1, a_0$ are constants, called the **coefficients** of the polynomial, $n \ge 0$ is an integer, and x is the variable. If $a_n \ne 0$, it is called the **leading coefficient**, and n is the **degree** of the polynomial.

The domain of a polynomial function is the set of all real numbers.

(1)

	-	
- 7		١
		,
	~	× .

 \frown

0

	DEGREE	Name	
f(x) = 0	lo Degree	ZERO	5x3 - 4
$f(x) = \sigma^{o}$	0	CONSTANT	X + Z -
$f(x) = \alpha x + \alpha_o$	1	LINEAR	$\frac{1}{x^2 - z}$
$f(x) = \alpha_2 x^2 + \alpha x + \alpha_0$	Z	QUADRATIC	8 -2x ³ (x
$f(x) = a_3 x^3 + a_2 x^2 + a_x + a_0$	3	CUBIC	-2x3(x

5x3 - 1/4 x2 -9	Y, 3
x+2-3x4	У, Ч
Tx	N, b/c n= 12
$\frac{x^2-z}{x^3-1}$	N, B/C A RATIONAL
8	4,0
$-2x^{3}(x-1)^{2}$	Y,5
-Zx3(x2-1)3	У, 9
x ⁴ +x ³ +x ² +x+	Tx + (Tx N, B/C
n=	$\frac{1}{2}$ $n = \frac{1}{4}$

If f is a function and r is a real number for which f(r) = 0, then r is called a **real zero** of f.

- 1. r is a real zero of a polynomial function f.
- 2. r is an x-intercept of the graph of f.
- x − r is a factor of f.

Q

 \bigcirc

 \bigcirc

 \bigcirc

4. r is a solution to the equation f(x) = 0.

If $(x - r)^m$ is a factor of a polynomial f and $(x - r)^{m+1}$ is not a factor of f, then r is called a **zero of multiplicity** m of f.*

If r Is a Zero of Even Multiplicity

Numerically: The sign of f(x) does not change from one side to the other side of r. Graphically: The graph of f touches the x-axis at r.

If r Is a Zero of Odd Multiplicity

Numerically: The sign of f(x) changes from one side to the other side of r. Graphically: The graph of f crosses the x-axis at r.

End Behavior

Ó

For large values of x, either positive or negative, the graph of the polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \quad a_n \neq 0$$

resembles the graph of the power function

 $y = a_n x^n$

Graphing a Polynomial Function

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0, a_n \neq 0$

- 1. Use the Leading Coefficient Test to determine the graph's end behavior.
- 2. Find x-intercepts by setting f(x) = 0 and solving the resulting polynomial equation. If there is an x-intercept at r as a result of $(x r)^k$ in the complete factorization of f(x), then
 - a. If k is even, the graph touches the x-axis at r and turns around.
 - **b.** If k is odd, the graph crosses the x-axis at r.
 - **c.** If k > 1, the graph flattens out near (r, 0).
- **3.** Find the *y*-intercept by computing *f*(0).
- 4. Use symmetry, if applicable, to help draw the graph:
 - **a.** y-axis symmetry: f(-x) = f(x)
 - **b.** Origin symmetry: f(-x) = -f(x).

5. Use the fact that the maximum number of turning points of the graph is n - 1, where *n* is the degree of the polynomial function, to check whether it is drawn correctly.