

POLYNOMIAL AND RATIONAL FUNCTIONS

Objectives:

- Identiffy polynomial functions
- Recognize characteristics of polynomial functions
- Determine the end behavior
- Use factoring to find zeros of polynomial functions
- Identiffy zeros and their multiplicities
- Use the Intermediate Value Theorem
- Understand the relationship between degree and turning points
- Graph polynomial functions

A polynomial function in one variable is a function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are constants, called the coefficients of the polynomial, $n \geq 0$ is an integer, and x is the variable. If $a_{n} \neq 0$, it is called the leading coefficient, and n is the degree of the polynomial.

The domain of a polynomial function is the set of all real numbers.

(a) Graph of a polynomial function: smooth, continuous

(b) Cannot be the graph of a polynomial function

If f is a function and r is a real number for which $f(r)=0$, then r is called a real zero of f.

1. r is a real zero of a polynomial function f.
2. r is an x-intercept of the graph of f.
3. $x-r$ is a factor of f.
4. r is a solution to the equation $f(x)=0$.

If $(x-r)^{m}$ is a factor of a polynomial f and $(x-r)^{m+1}$ is not a factor of f, then r is called a zero of multiplicity m of f *

If r Is a Zero of Even Multiplicity

Numerically: The sign of $f(x)$ does not change from one side to the other side of r. Graphically: The graph of f touches the x-axis at r.

If r Is a Zero of Odd Multiplicity

Numerically: The sign of $f(x)$ changes from one side to the other side of r.
Graphically: The graph of f crosses the x-axis at r.

Figure 9 Graph of a polynomial function

End Behavior
For large values of x, either positive or negative, the graph of the polynomial function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad a_{n} \neq 0
$$

resembles the graph of the power function

$$
y=a_{n} x^{n}
$$

(a)
$n \geq 2$ even; $a_{n}>0$

(b)
$n \geq 2$ even; $a_{n}<0$

(c)
$n \geq 3$ odd; $a_{n}>0$

(d)
$n \geq 3$ odd; $a_{n}<0$

Graphing a Polynomial Function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0
$$

1. Use the Leading Coefficient Test to determine the graph's end behavior.
2. Find x-intercepts by setting $f(x)=0$ and solving the resulting polynomial equation. If there is an x-intercept at r as a result of $(x-r)^{k}$ in the complete factorization of $f(x)$, then
a. If k is even, the graph touches the x-axis at r and turns around.
b. If k is odd, the graph crosses the x-axis at r.
c. If $k>1$, the graph flattens out near $(r, 0)$.
3. Find the y-intercept by computing $f(0)$.
4. Use symmetry, if applicable, to help draw the graph:
a. y-axis symmetry: $f(-x)=f(x)$
b. Origin symmetry: $f(-x)=-f(x)$.
5. Use the fact that the maximum number of turning points of the graph is $n-1$, where n is the degree of the polynomial function, to check whether it is drawn correctly.

$$
f(x)=x^{4}+a x^{3}+b x^{2}-5 x-6
$$

where $a>0, b>0$?

(a)

(b)

(c)

(d)

CC ALGEBRA
 CHAPTER 3 POLYNOMIAL AND RATIONAL FUNCTIONS

- SECTION 3.3 - DIVIDING POLYNOLIALS; REMAINDER AND FACTOR THEOREM

Objectives:

- Use long division to divide polynomials
- Use synthetic division to divide polynomials
- Evaluate a polynomial using the remainder theorem
- Use the factor theorem to solve a polynomial equation

$$
\frac{x^{2}+10 x+21}{x+3}
$$

$$
\text { or } \quad x^{2}+10 x+21 \div x+3
$$

$$
\frac{x+7}{x+3} \sqrt{\frac{x^{2}+10 x+21}{x^{2}+3 x}}
$$

$$
\begin{array}{r}
\frac{x^{2}+10 x+21}{7 x}+21 \\
\frac{7 x+21}{0}
\end{array}
$$

$$
\begin{gathered}
3 x - 2 \longdiv { 4 - 5 x - x ^ { 2 } + 6 x ^ { 3 } } \\
3 x-2 \sqrt{2 x^{2}+x-1+\frac{2}{3 x-2}} \\
\begin{array}{c}
\frac{6 x^{3}-x^{2}+5 x^{2}}{3 x^{2}-5 x+4} \\
\frac{-3 x^{2}+2 x}{-3 x+4} \\
+3 x+2
\end{array}
\end{gathered}
$$

$$
\frac{x^{2}-1}{x}
$$

$$
\frac{x}{x \sqrt{x^{2}-0 x-1}}
$$

