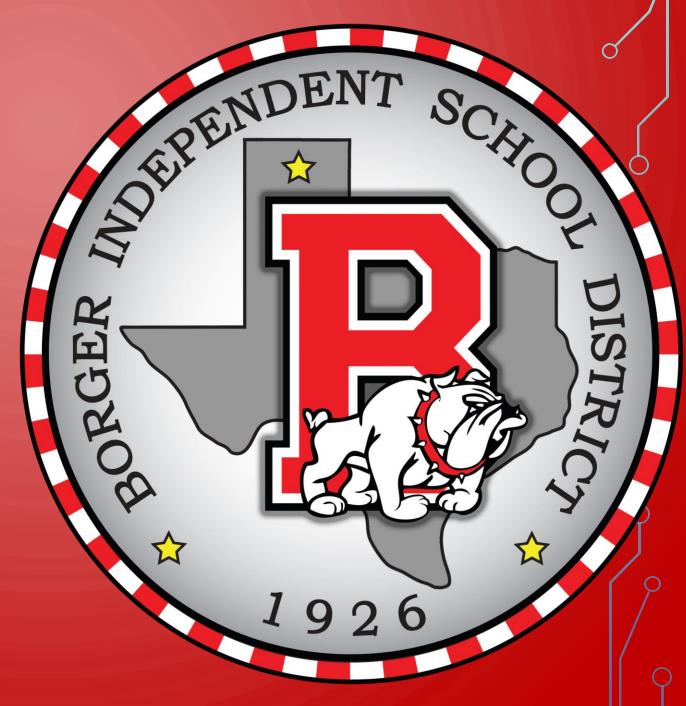
BOARD NOTES

29 OCTOBER 2018



CC ALGEBRA CHAPTER 4 — EXPONENTIAL AND LOGARITHMIC FUNCTIONS

• SECTION 4.2 - LOGARITHMIC FUNCTIONS

Objectives:

- Change from logarithmic to exponential form
- Change from exponential to logarthimic form
- Evaluate logarithms
- Use basic logarithmic propertites
- Use inverse logarithmic propertites
- Use common and natural logs

Definition of the Logarithmic Function

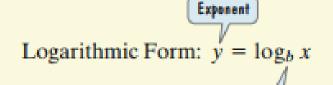
For x > 0 and b > 0, $b \ne 1$,

 $y = \log_b x$ is equivalent to $b^y = x$.

The function $f(x) = \log_b x$ is the **logarithmic function with base b**.

Base

Location of Base and Exponent in Exponential and Logarithmic Forms



Exponential Form: $b^y = x$

Exponent

- 1. $\log_b b = 1$ because 1 is the exponent to which b must be raised to obtain b. $(b^1 = b)$
- 2. $\log_b 1 = 0$ because 0 is the exponent to which b must be raised to obtain 1. $(b^0 = 1)$

Inverse Properties of Logarithms

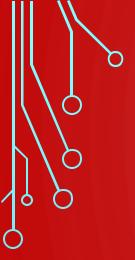
For b > 0 and $b \neq 1$,

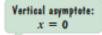
 $\log_b b^x = x$ The logarithm with base b of b raised to a power equals that power.

$$b^{\log_b x} = x$$
. b raised to the logarithm with base b of a number equals that number.

Characteristics of Logarithmic Functions of the Form $f(x) = \log_b x$

- 1. The domain of $f(x) = \log_b x$ consists of all positive real numbers: $(0, \infty)$. The range of $f(x) = \log_b x$ consists of all real numbers: $(-\infty, \infty)$.
- 2. The graphs of all logarithmic functions of the form f(x) = log_bx pass through the point (1,0) because f(1) = log_b 1 = 0. The x-intercept is 1. There is no y-intercept.
- 3. If b > 1, $f(x) = \log_b x$ has a graph that goes up to the right and is an increasing function.
- 4. If 0 < b < 1, f(x) = log_bx has a graph that goes down to the right and is a decreasing function.
- 5. The graph of f(x) = log_bx approaches, but does not touch, the y-axis. The y-axis, or x = 0, is a vertical asymptote.





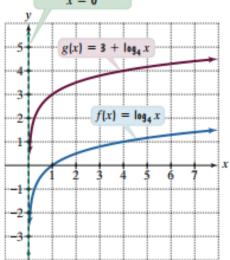


FIGURE 4.10 Shifting vertically up three units

Vertical asymptote: x = 0

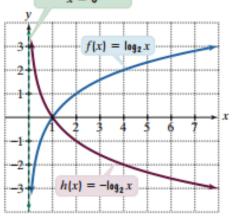


FIGURE 4.11 Reflection about the *x*-axis

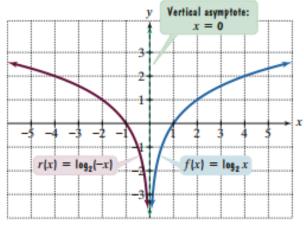


FIGURE 4.12 Reflection about the y-axis

Properties of Common Logarithms

General Properties

1.
$$\log_b 1 = 0$$

2.
$$\log_b b = 1$$

3.
$$\log_b b^x = x$$
 Inverse properties 3. $\log_b 10^x = x$
4. $\log_b x = x$

Common Logarithms

1.
$$\log 1 = 0$$

2.
$$\log 10 = 1$$

3.
$$\log 10^x = x$$

4.
$$10^{\log x} = x$$

Properties of Natural Logarithms

General Properties

1.
$$\log_b 1 = 0$$

$$2. \log_b b = 1$$

4. $b^{\log_b x} = x$ properties 4. $e^{\ln x} = x$

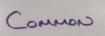
Natural Logarithms

1.
$$\ln 1 = 0$$

2.
$$\ln e = 1$$

3.
$$\log_b b^x = x$$
 Inverse 3. $\ln e^x = x$

$$e^{\ln x} = x$$



$$\log_{10} x = \log x$$

INVERSES

$$\rho_{\log P_X} = X$$

$$\log P_X = X$$

CC ALGEBRA CHAPTER 4 — EXPONENTIAL AND LOGARITHMIC FUNCTIONS

• SECTION 4.3 - PROPERTIES OF LOGARITHMS

Objectives:

- Use the product rule
- Use the quotient rule
- Use the power rule
- Expand logarithmic expressions
- Condense logarithmic expressions
- Use the change of base property

The Product Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$\log_b(MN) = \log_b M + \log_b N$$

The logarithm of a product is the sum of the logarithms.

The Quotient Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$$

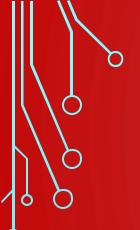
The logarithm of a quotient is the difference of the logarithms.

The Power Rule

Let b and M be positive real numbers with $b \neq 1$, and let p be any real number.

$$\log_b M^p = p \log_b M$$

The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.



Properties for Expanding Logarithmic Expressions

For M > 0 and N > 0:

1.
$$\log_b(MN) = \log_b M + \log_b N$$
 Product rule

2.
$$\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$$
 Quotient rule

$$3. \log_b M^p = p \log_b M$$

Power rule

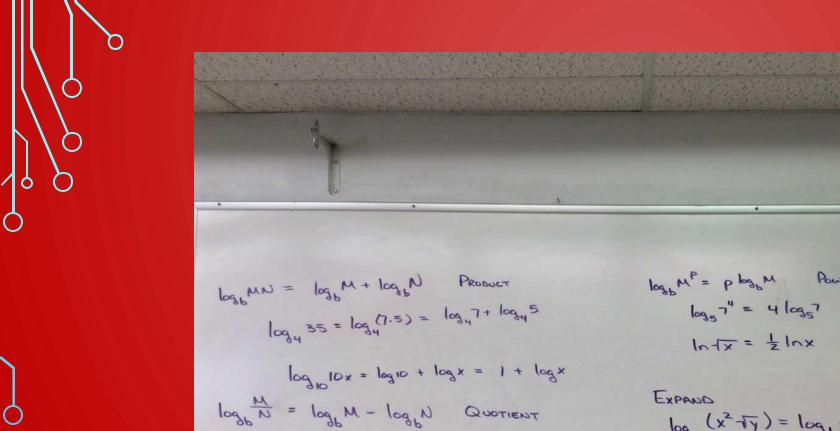
Properties for Condensing Logarithmic Expressions

For M > 0 and N > 0:

1.
$$\log_b M + \log_b N = \log_b(MN)$$
 Product rule

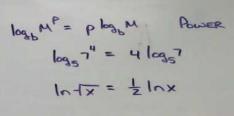
2.
$$\log_b M - \log_b N = \log_b \left(\frac{M}{N}\right)$$
 Quotient rule

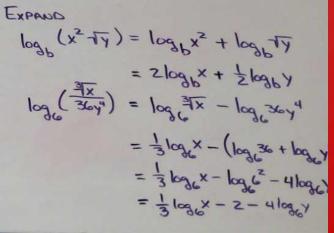
3.
$$p \log_b M = \log_b M^p$$
 Power rule



log = 19 = log 19 - log x

In = = Ine3 - In7 = 3 - In7





CONDENSE

$$\log_{4} z + \log_{4} 3z = \log_{4} \omega + \log_{4} u^{3} = 3$$

$$\log_{4} (4x-3) - \log_{4} z = \log_{4} \frac{u_{x-3}}{x}$$

$$\frac{1}{2}\log x + 4\log(x-1) + 1 = \log x^{\frac{1}{2}} + \log(x-1)^{4} + \log 10$$

$$= \log 4x(x-1)^{4} + \log 10$$

$$= \log 104x(x-1)^{4}$$

CHANGE OF BASE

$$log_b M = \frac{log_b M}{log_b}$$

$$log_b M = \frac{ln_b M}{ln_b}$$

For any logarithmic bases a and b, and any positive number M,

$$\log_b M = \frac{\log_a M}{\log_a b}.$$

The logarithm of M with base b is equal to the logarithm of M with any new base divided by the logarithm of b with that new base.

Introducing Common Logarithms

$$\log_b M = \frac{\log M}{\log b}$$

Introducing Natural Logarithms

$$\log_b M = \frac{\ln M}{\ln b}$$

