BOARD NOTES

29 OCTOBER 2018

 \square

 \mathbf{a}

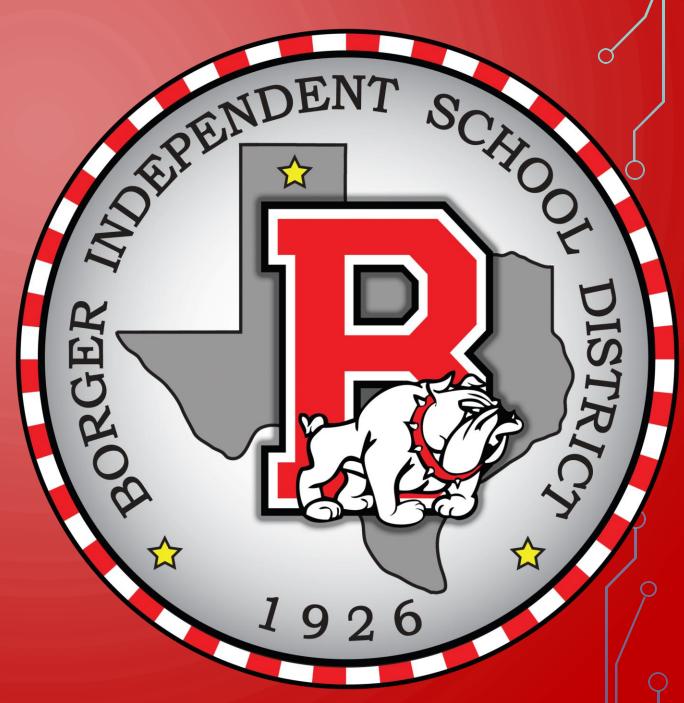
Q

B

 \bigcirc

 \mathbb{O}

Q



CC PRECALCULUS CHAPTER 5 – EXPONENTIAL AND LOGARITHMIC FUNCTIONS

 SECTION 5.2 - ONE-TO-ONE FUNCTIONS; INVERSE FUNCTIONS **Objectives:**

- Determine if a function is injective
- Determine the inverse of a function defined by a map or a set of ordered pairs
- Obtain the graph of the inverse function from the graph of the function
- Find the inverse of a function defined by an equation

ρ

Definition of Inverse

Suppose that f is a one-to-one function. Then, corresponding to each x in the domain of f, there is exactly one y in the range (because f is a function); and corresponding to each y in the range of f, there is exactly one x in the domain (because f is one-to-one). The correspondence from the range of f back to the domain of f is called the **inverse function of** f. The symbol f^{-1} is used to denote the inverse function of f.

Relationship of Domain and Range

Domain of $f = \text{Range of } f^{-1}$ Range of $f = \text{Domain of } f^{-1}$

Verifying an Inverse

 $f^{-1}(f(x)) = x$ where x is in the domain of f $f(f^{-1}(x)) = x$ where x is in the domain of f^{-1}

Symmetry of an Inverse

The graph of a one-to-one function f and the graph of its inverse function f^{-1} are symmetric with respect to the line y = x.

FRAME PHILLIPS COLLEGE PRODUCTION COLLEGE

Procedure for Finding the Inverse of a One-to-One Function

STEP 1: In y = f(x), interchange the variables x and y to obtain

x = f(y)

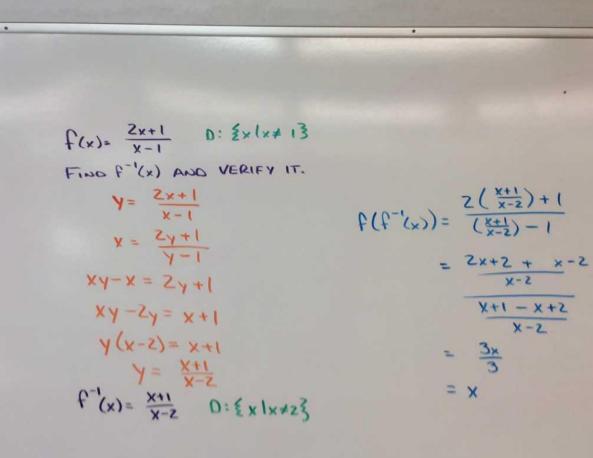
This equation defines the inverse function f^{-1} implicitly.

STEP 2: If possible, solve the implicit equation for y in terms of x to obtain the explicit form of f⁻¹:

 $y = f^{-1}(x)$

STEP 3: Check the result by showing that

 $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$



CC PRECALCULUS CHAPTER 5 – EXPONENTIAL AND LOGARITHMIC FUNCTIONS

 SECTION 5.3 - EXPONENTIAL FUNCTIONS **Objectives:**

- Evaluate exponential functions
- Graph exponential functions
- Define the number e
- Solve exponential equations

Brief Review: Law of Exponents

Laws of Exponents

If s, t, a, and b are real numbers with a > 0 and b > 0, then

$$a^s \cdot a^t = a^{s+t}$$
 $(a^s)^t = a^{st}$ $(ab)^s = a^s \cdot b^s$

$$1^{s} = 1$$
 $a^{-s} = \frac{1}{a^{s}} = \left(\frac{1}{a}\right)^{s}$ $a^{0} = 1$ (1)

Definition of Exponential Function

An exponential function is a function of the form

 $f(x) = Ca^x$

where *a* is a positive real number $(a > 0), a \neq 1$, and $C \neq 0$ is a real number. The domain of *f* is the set of all real numbers. The base *a* is the **growth factor**, and, because $f(0) = Ca^0 = C$, *C* is called the **initial value**.

Ó

LAW OF EXPONENTS FG) = Cax 0+1 \$ 0>0 PwPu = Pw+U $f'(f(x)) = (\frac{2x+1}{x-1}) + 1$ $\overline{(\frac{2x+1}{x-1})-2}$ $(P_w)_U = P_{w_U}$ C = INITIAL VALUE $= \frac{2x+1+x-1}{x-1}$ $\frac{Pu}{Pw} = Pw-u$ × - NM -2x+1-2+2 x-1 P-w = -Im = 3× Po = x $p_m = p_u \rightarrow w = v$

Linear Model

Average Rate of Change of a Linear Function

Linear functions have a constant average rate of change. That is, the average rate of change of a linear function f(x) = mx + b is

 $\frac{4y}{x} = m$

Quadratic Model - Have to visualize the data

Exponential Model

For an exponential function $f(x) = Ca^x$, a > 0, $a \neq 1$, and $C \neq 0$, if x is any real number, then

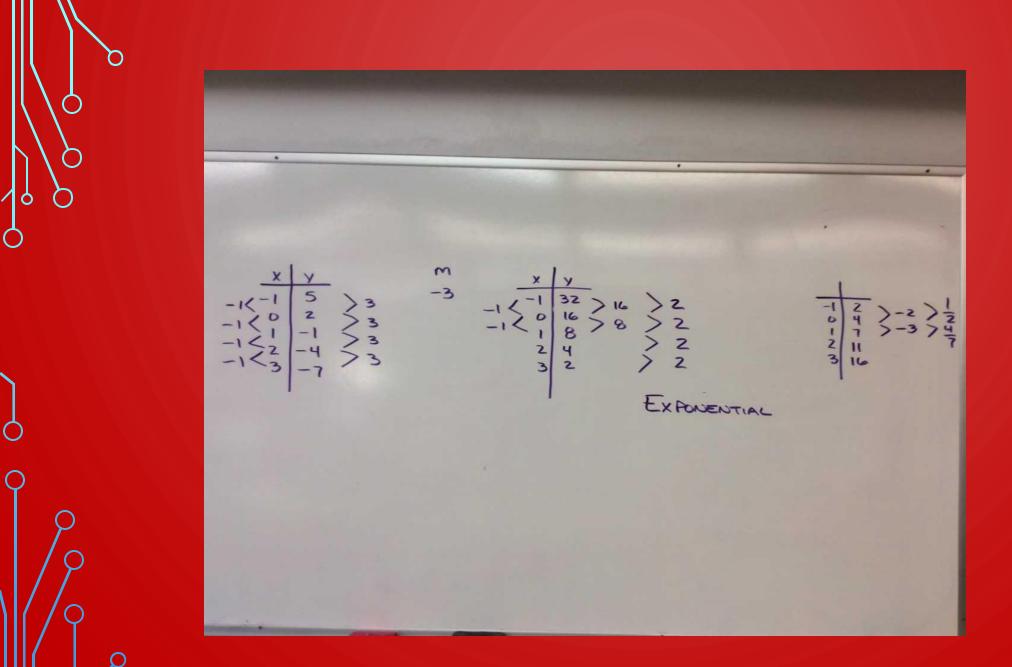
$$\frac{f(x+1)}{f(x)} = a \quad \text{or} \quad f(x+1) = af(x)$$

(a)		
x	у	
-1	5	
0	2	
1	-1	
2	-4	
3	-7	

Ó

(b)		
x	у	
-1	32	
0	16	
1	8	
2	4	
3	2	

(c)		
x	у	
-1	2	
0	4	
1	7	
2	11	
3	16	



FRANKER HILLERS COLLEGE

DISTRICT SCROOT

Exponential Growth Model

Properties of the Exponential Function $f(x) = a^x, a > 1$

- The domain is the set of all real numbers, or (-∞,∞) using interval notation; the range is the set of positive real numbers, or (0,∞) using interval notation.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to -\infty$. $\left[\lim_{x \to -\infty} a^x = 0\right]$.
- 4. $f(x) = a^x, a > 1$, is an increasing function and is one-to-one.
- 5. The graph of f contains the points $\left(-1, \frac{1}{a}\right)$, (0, 1), and (1, a).
- The graph of f is smooth and continuous, with no corners or gaps. See Figure 21.

Properties of the Exponential Function $f(x) = a^x$, 0 < a < 1

- The domain is the set of all real numbers, or (-∞,∞) using interval notation; the range is the set of positive real numbers, or (0,∞) using interval notation.
- 2. There are no x-intercepts; the y-intercept is 1.

Exponential Decay Model

- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to \infty$ [$\lim_{x \to \infty} a^x = 0$].
- 4. $f(x) = a^x, 0 < a < 1$, is a decreasing function and is one-to-one.
- 5. The graph of f contains the points $\left(-1, \frac{1}{a}\right)$, (0, 1), and (1, a).
- The graph of f is smooth and continuous, with no corners or gaps. See Figure 25.

Q \bigcirc ocaci Fun= 12 × 0>1 fus= 2 × $G(x) = \frac{1}{3}$ g(x)= 3× 3×+1 = 81 $H(x) = \frac{1}{5}^{\times}$ h(x)= 5* 3 * + 1 = 34 D: R HA y=0 X+I = 4 $(-1,\frac{1}{\alpha})(0,1)(1,\alpha)$ X = 3Contraction of the second seco

Euler's Number

Q

The number e is defined as the number that the expression

approaches as $n \rightarrow \infty$. In calculus, this is expressed, using limit notation, as

 $\left(1+\frac{1}{n}\right)^{t}$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$$

(2)