

CHAPTER 4 -
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- SECTION 4.3 - PROPERTIES OF LOGARITHMS

Objectives:

- Use the product rule
- Use the quotient rule
- Use the power rule
- Expand logarithmic expressions
- Condense logarithmic expressions
- Use the change of base property

The Product Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$
\log _{b}(M N)=\log _{b} M+\log _{b} N
$$

The logarithm of a product is the sum of the logarithms.

The Quotient Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

The logarithm of a quotient is the difference of the logarithms.
The Power Rule
Let b and M be positive real numbers with $b \neq 1$, and let p be any real number.

$$
\log _{b} M^{p}=p \log _{b} M
$$

The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.

Properties for Expanding Logarithmic Expressions
For $M>0$ and $N>0$:

1. $\log _{b}(M N)=\log _{b} M+\log _{b} N \quad$ Product rule
2. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ Quotient rule
3. $\log _{b} M^{p}=p \log _{b} M$

Power rule

$$
\begin{aligned}
& \text { Properties for Condensing Logarithmic Expressions } \\
& \text { For } M>0 \text { and } N>0 \text { : } \\
& \begin{array}{cl}
\text { 1. } \log _{b} M+\log _{b} N=\log _{b}(M N) & \text { Product rule } \\
\text { 2. } \log _{b} M-\log _{b} N=\log _{b}\left(\frac{M}{N}\right) & \text { Quotient rule } \\
\text { 3. } p \log _{b} M=\log _{b} M^{p} & \text { Power rule }
\end{array}
\end{aligned}
$$

For any logarithmic bases a and b, and any positive number M,

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} .
$$

The logarithm of M with base b is equal to the logarithm of M with any new base divided by the logarithm of b with that new base.

The Change-of-Base Property: Introducing Common and Natural Logarithms

Introducing Common Logarithms

$\log _{b} M=\frac{\log M}{\log b}$

Introducing Natural Logarithms

$$
\log _{b} M=\frac{\ln M}{\ln b}
$$

CHAPTER 4 -
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- SECTION 4.4 - EXPONENTIAL AND LOGARITHMIC EQUATIONS

Objectives:

- Use like bases to solve exponential equations

- Use logarithms to solve exponential equations
- Use the definition of logarithm to solve logarithmic equations
- Use one-to-one property of logarithms to solve logarithmic equations
- Solve applied problems involving exponential and logarithmic equations

Solving Exponential Equations by Expressing Each Side as a Power of the Same Base

1. Rewrite the equation in the form $b^{M}=b^{N}$.
2. Set $M=N$.
3. Solve for the variable.

Using Logarithms to Solve Exponential Equations

1. Isolate the exponential expression.
2. Take the common logarithm on both sides of the equation for base 10 . Take the natural logarithm on both sides of the equation for bases other than 10 .

3. Simplify using one of the following properties:

$$
\ln b^{x}=x \ln b \quad \text { or } \quad \ln e^{x}=x \quad \text { or } \quad \log 10^{x}=x
$$

4. Solve for the variable.

Using the Definition of a Logarithm to Solve Logarithmic Equations

1. Express the equation in the form $\log _{b} M=c$.
2. Use the definition of a logarithm to rewrite the equation in exponential form:

3. Solve for the variable.
4. Check proposed solutions in the original equation. Include in the solution set only values for which $M>0$.

Using the One-to-One Property of Logarithms to Solve

Logarithmic Equations

1. Express the equation in the form $\log _{b} M=\log _{b} N$. This form involves a single logarithm whose coefficient is 1 on each side of the equation.
2. Use the one-to-one property to rewrite the equation without logarithms: If $\log _{b} M=\log _{b} N$, then $M=N$.
3. Solve for the variable.
4. Check proposed solutions in the original equation. Include in the solution set only values for which $M>0$ and $N>0$.

$$
\log _{7} 2506=\frac{\ln 2506}{\ln 7}=\frac{\log 2506}{\log 7} \quad b^{m}=b^{n} \rightarrow m=n
$$

- Same base
- Different

Bases
Defin of Lo

- Pror of loss
- U-Sue

$$
\begin{aligned}
2^{3 x-8} & =16 \\
2^{3 x-8} & =2^{4} \\
3 x-8 & =4 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

- $27^{x-3}=9^{x-1}$

$$
3^{3(x-3)}=3^{2(x-1)}
$$

$$
3 x-9=2 x-2
$$

$$
x=7
$$

