BOARD NOTES

30 OCTOBER 2018

 \square

 \mathbf{a}

Q

B

 \bigcirc

 \mathbb{O}

Q

.

CC PRECALCULUS CHAPTER 5 – EXPONENTIAL AND LOGARITHMIC FUNCTIONS

SECTION 5.4 - PROPERTIES
 OF LOGARITHMS

Objectives:

- Write a logarithmic expression as a sum or difference of logarithms
- Write a sum or difference of logarithms as single logarithmic expression
- Evaluate logarithms whose base is neither 10 nor e

Location of Base and Exponent in Exponential and Logarithmic Forms Exponent Logarithmic Form: $y = \log_b x$ Base Base Exponential Form: $b^y = x$ Base

Basic Logarithmic Properties Involving One

- 1. $\log_b b = 1$ because 1 is the exponent to which b must be raised to obtain b. $(b^1 = b)$
- 2. $\log_b 1 = 0$ because 0 is the exponent to which b must be raised to obtain 1. $(b^0 = 1)$

Inverse Properties of Logarithms

For b > 0 and $b \neq 1$,

 $\log_b b^x = x$ The logarithm with base b of b raised to a power equals that power. $b^{\log_b x} = x$. b raised to the logarithm with base b of a number equals that number.

The Change-of-Base Property: Introducing Common and Natural Logarithms

Introducing Common Logarithms

log M

log b

 $\log_b M =$

Introducing Natural Logarithms

$$\log_b M = \frac{\ln M}{\ln b}$$

Properties of Logarithms

 \bigcap

0

In the following properties, M, N, and a are positive real numbers, $a \neq 1$.

If $M = N$, then $\log_a M = \log_a N$.	(7)
If $\log_a M = \log_a N$, then $M = N$.	(8)

If
$$\log_a M = \log_a N$$
, then $M = N$.

The Product Rule

Let b, M, and N be positive real numbers with $b \neq 1$. $\log_b(MN) = \log_b M + \log_b N$ The logarithm of a product is the sum of the logarithms.

The Quotient Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$$

The logarithm of a quotient is the difference of the logarithms.

The Power Rule

Let b and M be positive real numbers with $b \neq 1$, and let p be any real number.

$$\log_b M^p = p \log_b M$$

The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.

Properties for Expanding Logarithmic Expressions
For
$$M > 0$$
 and $N > 0$:
1. $\log_b(MN) = \log_b M + \log_b N$ Product rule
2. $\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$ Quotient rule
3. $\log_b M^p = p \log_b M$ Power rule

Properties for Condensing Logarithmic ExpressionsFor M > 0 and N > 0:**1.** $\log_b M + \log_b N = \log_b(MN)$ Product rule**2.** $\log_b M - \log_b N = \log_b \left(\frac{M}{N}\right)$ Quotient rule**3.** $p \log_b M = \log_b M^p$ Power rule

Ø

 $\log_{a} 7 + 4 \log_{a} 3 = \log_{a} 567$ $\frac{2}{3} \ln 8 - \ln(5^{2} - 1) = \ln \frac{1}{6}$ $\log X + \log 9 + \log (x^{2}+1) - \log 5 - \frac{1}{3} \log x = \log \frac{9x(x^{2}+1)}{5^{3}x}$

Ó