

$$
\begin{aligned}
& \text { Basics } \\
& \log _{b} b=1 \\
& \log _{b} 1=0 \\
& \text { lnverse } \\
& \log _{b} b^{x}=x \\
& b^{\log _{b} x}=x
\end{aligned}
$$

CC PRECALCULUS
 CHAPTER 5 -
 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- SECTION 5.4 - PROPERTIES OF LOGARITHMS

Objectives:

- Work with the properties of logarithms
- Write a logarithmic expression as a sum or difference of logarithms
- Write a sum or difference of logarithms as single logarithmic expression
- Evaluate logarithms whose base is neither 10 nor e

Location of Base and Exponent in Exponential and Logarithmic Forms

Basic Logarithmic Properties Involving One

1. $\log _{b} b=1$ because 1 is the exponent to which b must be raised to obtain b. ($b^{1}=b$)
2. $\log _{b} 1=0$ because 0 is the exponent to which b must be raised to obtain 1 . ($b^{0}=1$)

Inverse Properties of Logarithms
For $b>0$ and $b \neq 1$,
$\log _{b} b^{x}=x \quad$ The logarithm with base b of b raised to a power equals that power.
$b^{\log _{s} x}=x . \quad b$ raised to the logarithm with base b of a number equals that number.
The Change-of-Base Property: Introducing Common and Natural Logarithms

Introducing Common Logarithms
$\log _{b} M=\frac{\log M}{\log b}$

Introducing Natural Logarithms
$\log _{b} M=\frac{\ln M}{\ln b}$

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, $a \neq 1$.

$$
\begin{aligned}
& \text { If } M=N \text {, then } \log _{a} M=\log _{a} N \\
& \text { If } \log _{a} M=\log _{a} N \text {, then } M=N
\end{aligned}
$$

The Product Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$
\log _{b}(M N)=\log _{b} M+\log _{b} N
$$

The logarithm of a product is the sum of the logarithms.

The Quotient Rule

Let b, M, and N be positive real numbers with $b \neq 1$.

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

The logarithm of a quotient is the difference of the logarithms.
The Power Rule
Let b and M be positive real numbers with $b \neq 1$, and let p be any real number.

$$
\log _{b} M^{p}=p \log _{b} M
$$

The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.

Properties for Expanding Logarithmic Expressions For $M>0$ and $N>0$:

1. $\log _{b}(M N)=\log _{b} M+\log _{b} N \quad$ Product rule 2. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ Quotient rule
2. $\log _{b} M^{p}=p \log _{b} M$

Power rule

$$
\begin{aligned}
& \text { Properties for Condensing Logarithmic Expressions } \\
& \text { For } M>0 \text { and } N>0 \text { : } \\
& \begin{array}{cl}
\text { 1. } \log _{b} M+\log _{b} N=\log _{b}(M N) & \text { Product rule } \\
\text { 2. } \log _{b} M-\log _{b} N=\log _{b}\left(\frac{M}{N}\right) & \text { Quotient rule } \\
\text { 3. } p \log _{b} M=\log _{b} M^{p} & \text { Power rule }
\end{array}
\end{aligned}
$$

IF $b^{m}=b^{n}$ THEN $m=n$
IF $m=n$ THEN $b^{m}-b^{n}$

IF $\log _{b} M=\log _{b} N$ THEN $M=N$
IF $M=N$ THEN $\log _{b} M=\log _{b} N$
Product
Quotient

$$
\begin{aligned}
& \log _{b} M N=\log _{b} M+\log _{b} N \\
& \log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N \\
& \text { Power } \\
& \log _{b} M^{P}=p \log _{b} M \\
& \begin{array}{r}
\text { Change of Base } \\
\log _{b} M=\frac{\ln M}{\ln b}
\end{array} \\
& =\ln x^{2}-\ln (x-1)^{3} \\
& =2 \ln x-3 \ln (x-1) \\
& k(x)=\log \frac{10 \sqrt{x^{2}-1}}{x^{3}(x+1)^{4}} \\
& =1+\frac{1}{2} \log (x-1)+\frac{1}{2} \log (x+1)-3 \log x-4 \log (x+1) \\
& =1+\frac{1}{2} \log (x-1)-\frac{7}{2} \log (x+1)-3 \log x
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\log _{a}\left(x-\sqrt{x^{2}+1}\right) \\
& =\log _{a} x+\log _{a} \sqrt{x^{2}+1} \\
& =\log _{a} x+\frac{1}{2} \log _{a}\left(x^{2}+1\right) \\
g(x) & =\log _{a}\left(x-\sqrt{x^{2}-1}\right) \\
& =\log _{a} x+\frac{1}{2} \log _{a}(x-1)+\frac{1}{2} \log _{a}(x+1) \\
h(x) & =\ln \frac{x^{2}}{(x-1)^{3}} \\
& =\ln x^{2}-\ln (x-1)^{3} \\
& =2 \ln x-3 \ln (x-1) \\
k(x) & =\log _{\frac{10}{} \frac{10}{x^{2}-1}}^{x^{3}(x+1)^{4}} \\
& =1+\frac{1}{2} \log (x-1)+\frac{1}{2} \log (x+1)-3 \log x-4 \log (x+1) \\
& =1+\frac{1}{2} \log ^{2}(x-1)-\frac{7}{2} \log (x+1)-3 \log x
\end{aligned}
$$

$$
\begin{aligned}
& \log _{a} 7+4 \log _{a} 3=\log _{a} 567 \\
& \frac{2}{3} \ln 8-\ln \left(5^{2}-1\right)=\ln \frac{1}{6} \\
& \log x+\log 9+\log \left(x^{2}+1\right)-\log 5-\frac{1}{3} \log x=\log \frac{9 x\left(x^{2}+1\right)}{5 \sqrt[3]{x}}
\end{aligned}
$$

