
BOARD NOTES

5 NOVEMBER 2018

CC PRECALCULUS CHAPTER 5 — EXPONENTIAL AND LOGARITHMIC FUNCTIONS

 SECTION 5.6 - LOGARITHMIC AND EXPONENTIAL EQUATIONS Objectives:

Solve exponential equations

Solve logarithmic equations

 Solve logarithmic and exponential equations using a calculator

FRANKFRILUPS COLLEGE PROPERTY OF THE PROPERTY

Laws of Exponents

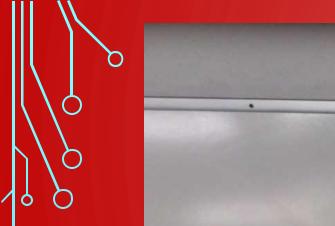
If s, t, a, and b are real numbers with a > 0 and b > 0, then

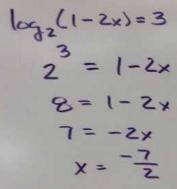
$$a^{s} \cdot a^{t} = a^{s+t}$$
 $(a^{s})^{t} = a^{st}$ $(ab)^{s} = a^{s} \cdot b^{s}$
 $1^{s} = 1$ $a^{-s} = \frac{1}{a^{s}} = \left(\frac{1}{a}\right)^{s}$ $a^{0} = 1$ (1)

Properties of Logarithms

In the list that follows, a, b, M, N, and r are real numbers. Also, a > 0, $a \ne 1$, b > 0, $b \ne 1$, M > 0, and N > 0.

Definition $y = \log_a x \text{ means } x = a^y$

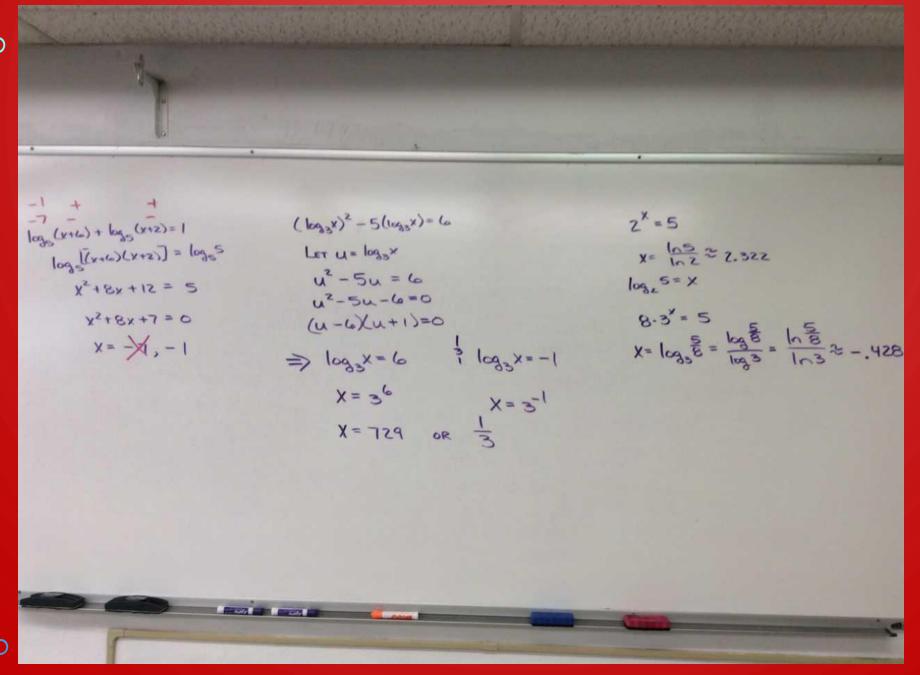

Properties of Logarithms $\log_a 1 = 0$ $\log_a a = 1$ $\log_a M^r = r \log_a M$


 $a^{\log_a M} = M$ $\log_a a^r = r$ $a^r = e^{r \ln a}$

 $\log_a(MN) = \log_a M + \log_a N \qquad \qquad \log_a \left(\frac{M}{N}\right) = \log_a M - \log_a N$

If M = N, then $\log_a M = \log_a N$. If $\log_a M = \log_a N$, then M = N.

Change-of-Base Formula $\log_a M = \frac{\log_b M}{\log_b a}$


$$2 \log_5 x = \log_5 9$$

 $\log_5 x^2 = \log_5 9$
 $x^2 = 9$
 $x = 3, -3$
 $\log_4(x+2) = \log_4 8$

X+5 = 8

X = 6

$$5^{X-2} = 3^{X+2}$$

$$|h 5^{X-2} = |h 3^{X+2}|$$

$$|(y-2)|h 5 = (3x+2)|h 3$$

$$|x|h 5 - 2|h 5 = 3x|h 3 + 2|h 3$$

$$|x|h 5 - 3x|h 3 = 2(|h 3 + |h 5))$$

$$|x|(|h 5 - 3|h 3) = 2(|h 3 + |h 5)$$

$$|x| = \frac{2(|h 3 + |h 5)}{|h 5 - 3|h 3} \approx -3.212$$

$$4^{x} - 2^{x} - 12 = 0$$

$$(2^{2})^{x} - 2^{x} - 12 = 0$$

$$2^{2x} - 2^{x} - 12 = 0$$

$$(2^{x})^{2} - 2^{x} - 12 = 0$$

$$U = 2^{x}$$

$$U^{2} - U - 12 = 0$$