

6 NOVEMBER 2018

 \square

 \mathbf{a}

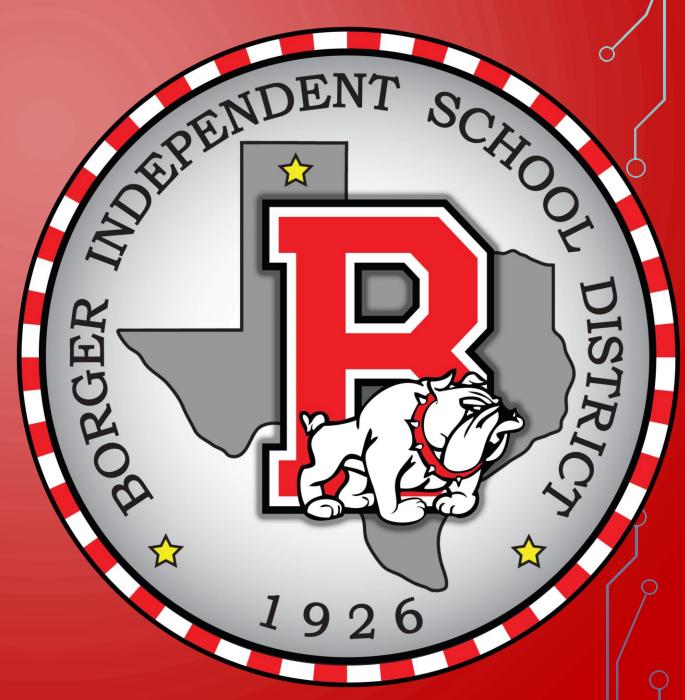
Q

ററ്

B

 \mathbb{O}

Q



CC PRECALCULUS CHAPTER 5 – EXPONENTIAL AND LOGARITHMIC FUNCTIONS

• SECTION 5.7 - FINANCIAL MODELS

Objectives:

- Determine the future value of a lump sum of money
- Calculate the effective rates of return
- Determine the present value of a lump sum of money
- Determine the rate of interest or the time required to double a lump sum of money

ρ

Simple Interest Formula

If a principal of P dollars is borrowed for a period of t years at a per annum interest rate r, expressed as a decimal, the interest I charged is

I = Prt

(4)

Compound Interest Formula

The amount A after t years due to a principal P invested at an annual interest rate r, expressed as a decimal, compounded n times per year is

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt} \tag{2}$$

Continuous Compounding

The amount A after t years due to a principal P invested at an annual interest rate r compounded continuously is

$$A = Pe^{n}$$

*
$$I = Prt$$

T_{NST} = $(1000 \times .02)(\frac{1}{4}) = 45$
 $I_{NST} = (1005 \times .02)(\frac{1}{4}) = 45.03$
 $I_{2200} = (1005 \times .02)(\frac{1}{4}) = 45.05$
 $I_{380} = (1010.03 \times .02)(\frac{1}{4}) = 45.05$
 $I_{380} = (1015.08)(.02)(\frac{1}{4}) = 45.08$
 $t = \frac{1}{4}$
 $I_{NTH} = (1015.08)(.02)(\frac{1}{4}) = 45.08$

ρ

0

Effective Rate of Interest

Ó

The effective rate of interest r_e of an investment earning an annual interest rate r is given by

Compounding *n* times per year:
$$r_e = \left(1 + \frac{r}{n}\right)^n - 1$$

Continuous compounding: $r_e = e^r - 1$

 $A = P(1 + \frac{C}{n})^{n \ell}$ = 1000(1+ $\frac{102}{4}$)^{4.1} = \$1000(1+ $\frac{102}{4}$)^{4.1}

ANNUALLY n=1Semi-ANNUALLY n=2QUARTERLY n=4MONTHLY n=12Daily n=365CONTINUOUS

t=2 P=+1000 r 275

A= Pert

\$ 1040.40

\$ 1040.60

\$ 1040.70

\$ 1040.78

\$ 1040.81

\$ 1040.81

EFFECTIVE RATE OF RETURN $f_e = (1+f_n)^n - 1$ $f_e = e^n - 1$

AMERICAN EXPRESS RATE OF 2.15% COMP MONTHLY $\int_{AE}^{2} = (1 + \frac{0215}{12})^{12} - 1 = .02171$ 2.171%

* BANK OF AMERICA RATE OF 2.22 COMP QUARTERLY $\Gamma_{ROA} = (1 + \frac{.022}{4})^4 - 1 = .02218$ 2.218% Discover RATE OF 2.12% COMP DAILY $\Gamma_{D} = (1 + \frac{.0212}{365})^{365} - 1 = .02143$ 2.143%

Present Value Formulas

0

The present value P of A dollars to be received after t years, assuming a per annum interest rate r compounded n times per year, is

$$P = A \cdot \left(1 + \frac{r}{n}\right)^{-m} \tag{5}$$

If the interest is compounded continuously, then

$$P = Ae^{-r}$$

(6)

$P = A(1+f_{n})^{-n}$	Ł	A
$P = A e^{-rt}$		A
t= 10		=>
L= 8%	r=78	
A = 1000		
COMP MONTHLY	COMP CONT	
\$ 450.52	\$496.59	

 $A = P(1+\frac{\Gamma}{n})^{nt}$ A = 2P $2P = P(1+f_{n})^{nt}$ n = 1 = 5 $Z = \left(1 + \frac{\Gamma}{1}\right)^5$ 52=1+1 .149 = 5 (= 1.49%

