

## CC PRECALCULUS

CHAPTER 5 -
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- SECTION 5.8 - EXPONENTIAL GROWTH AND DECAY MODELS; NEWTON'S LAW; LOGISTIC GROWTH AND DECAY MODELS

Objectives:

- Find equations of populations that obey uninhibited growth
- Find equations of populations that obey the law of decay
- Use Newton's law of cooling
- Use logistic models


## Newton's Law of Cooling

The temperature $u$ of a heated object at a given time $t$ can be modeled by the following function:


$$
\begin{equation*}
u(t)=T+\left(u_{0}-T\right) e^{k t} \quad k<0 \tag{4}
\end{equation*}
$$

where $T$ is the constant temperature of the surrounding medium, $u_{0}$ is the initial temperature of the heated object, and $k$ is a negative constant.

An object is heated to $100^{\circ} \mathrm{C}$ and is then allowed to cool in a room whose air temperature is $30^{\circ} \mathrm{C}$.
a. If the temperature of the object is $80^{\circ} \mathrm{C}$ after 5 minutes, when will its temperature be $50^{\circ} \mathrm{C}$ ?
b. Determine the elapsed time before the temperature of the object is $35^{\circ} \mathrm{C}$.
C. What do you notice about the temperature as time passes?


$$
\begin{aligned}
& u(t)=T+\left(u_{0}-T\right) e^{k t} \\
& u(s)= 80=30+(100-30) e^{k s} \\
& \frac{50}{70}=e^{k s} \\
& \frac{\ln \frac{5}{7}}{5}=k=-.0673
\end{aligned}
$$

$50=30+(100-30) e^{-.0073 t}$

$$
\frac{\ln \frac{2}{7}}{-.0 .73}=t=18.62 \mathrm{~m}
$$

$$
18 \mathrm{~m} 37 \mathrm{~s}
$$

$$
t=39 \mathrm{~m} 13 \mathrm{~s}
$$



## Logistic Model

In a logistic model, the population $P$ after time $t$ is given by the function

$$
\begin{equation*}
P(t)=\frac{c}{1+a e^{-b t}} \tag{7}
\end{equation*}
$$

where $a, b$, and $c$ are constants with $a>0$ and $c>0$. The model is a growth model if $b>0$; the model is a decay model if $b<0$.


Fruit flies are placed in a half-pint milk bottle with a banana (for food) and yeast plants (for food and to provide a stimulus to lay eggs). Suppose the fruit fly population after $t$ days is given by

$$
P(t)=\frac{230}{1+56.5 e^{-0.37 t}}
$$

a. State the carrying capacity and the growth rate.
b. Determine the initial population.
c. What is the population after 5 days?
d. How long does it take for the population to reach 180 ?
e. How long does it take for the population to reach one-half of the carrying population?


$$
P(t)=\frac{c}{1+e_{t \rightarrow \infty}^{+k}}
$$

a) $230 \quad 37 \%$
d)

$$
\begin{aligned}
P(0) & =\frac{230}{1+56.5 e}-37 \cdot 0 \\
& =4
\end{aligned}
$$

$$
\text { c) } P(5)=23
$$

b)
P

## CC PRECALCULUS <br> CHAPTER 5 - <br> EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- SECTION 5.9 BUILDING

EXPONENTIAL, LOGARITHMIC, LOGISTIC MODELS FROM DATA

Objectives:

- Build an exponential model from data
- Build a logarithmic model from data
- Build a logistic model from data

Mariah deposited $\$ 20,000$ in a well-diversified mutual fund 6 years ago. The data in the table represents the value of the account at the beginning of each year for the last 7 years.

| Yealr, $x$ | Account Value, $y$ |
| :---: | :---: |
| 0 | 20,000 |
| 1 | 21,516 |
| 2 | 23,355 |
| 3 | 24,885 |
| 4 | 27,484 |
| 5 | 30,053 |
| 6 | 32,622 |

a. Draw a scatter plot
b. Build an exponential model
C. Graph the exponential model
d. What is value of the account in 10 years?

Jodi, a meteorologist, is interested in finding a function that explains the relation between the height of a weather balloon (in kilometers) and the atmospheric pressure (measured in millimeters of mercury) on the balloon. She collects the following data:

| Atmospheric Pressure, | Height, h |
| :---: | :---: |
| $p$ | 0 |
| 760 | 0.184 |
| 740 | 0.328 |
| 725 | 0.565 |
| 700 | 1.079 |
| 650 | 1.291 |
| 630 | 1.634 |
| 600 | 1.862 |
| 580 | 2.235 |
| 550 |  |

a. Draw a scatter plot
b. Build an logarithmic model
c. Graph the logarithmic model
d. Predict the height of the weather balloon if the pressure is 560 millimeters of mercury.

|  | Time (hours) | Yeast Biomass |
| :---: | :---: | :---: |
|  | 0 | 9.6 |
|  | 1 | 18.3 |
|  | 2 | 29.0 |
|  | 3 | 47.2 |
| $\bigcirc$ | 4 | 71.1 |
|  | 5 | 119.1 |
|  | 6 | 174.6 |
|  | 7 | 257.3 |
|  | 8 | 350.7 |
|  | 9 | 441.0 |
|  | 10 | 513.3 |
|  | 11 | 559.7 |
|  | 12 | 594.8 |
|  | 13 | 629.4 |
|  | 14 | 640.8 |
|  | 15 | 651.1 |
|  | 16 | 655.9 |
|  | 17 | 659.6 |
|  | 18 | 661.8 |

The table represents the amount of yeast biomass in a culture after $t$ hours:
a. Draw a scatter plot
b. Build an logistic model

c. Graph the logistic model
d. What is predicted carrying capacity?
e. What is the predicted population at $t=19$ hours?

