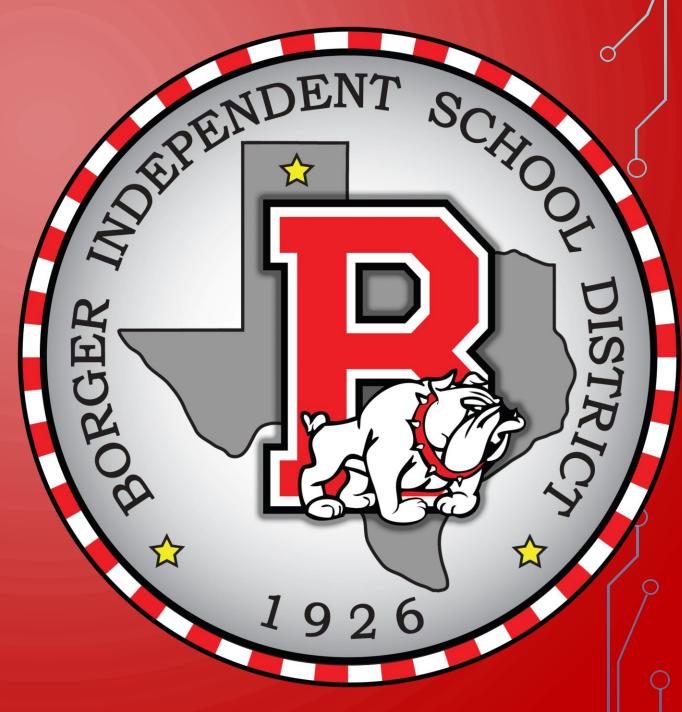
BOARD NOTES

22 JANUARY 2019



CC TRIGONOMETRY CHAPTER 1 ANGLES AND TRIGONOMETRIC FUNCTIONS

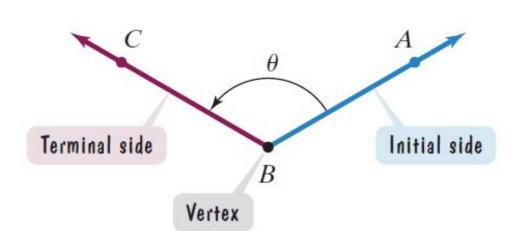
SECTION 1.1 - Angles and

Radian Measure

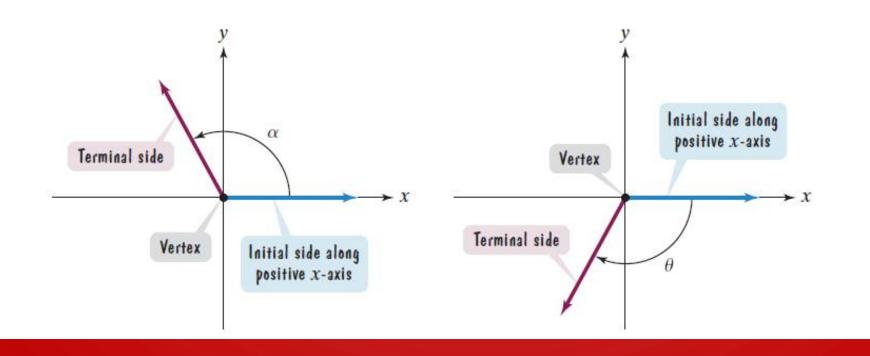
Objectives:

- Learn the vocabulary
- Use degree measure
- Use radian measure
- Convert between the two
- Draw angles in standard position
- Find coterminal angles
- Arc length
- Area of sector
- Linear and angular speed

An **angle** is formed by two rays that have a common endpoint. One ray is called the **initial side** and the other the **terminal side**.

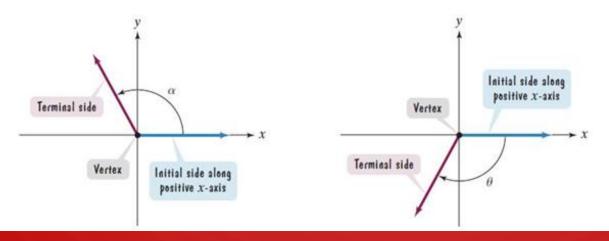


An angle is in standard position if its vertex is at the origin of a rectangular coordinate system and its initial side lies along the positive x-axis.



Positive angles are generated by counterclockwise rotation. Thus, angle

by clockwise rotation. Thus, angle θ is negative.



Angles are measured by determining the amount of rotation from the initial side to the terminal side. A complete rotation of the circle is 360 degrees, or 360°.

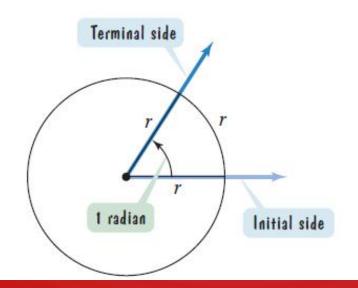
An **acute angle** measures less than 90°.

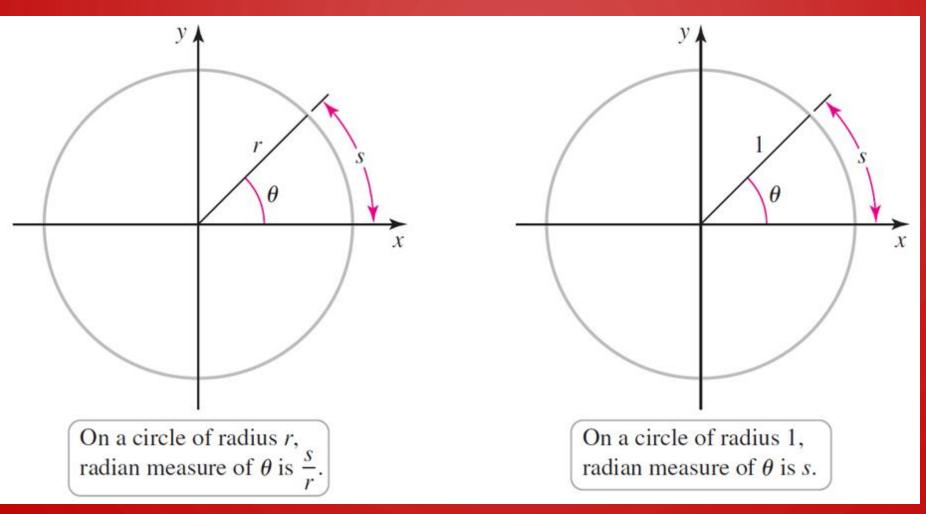
A **right angle** measures 90°.

An **obtuse angle** measures more than 90° but less than 180°.

A **straight angle** measures 180°.

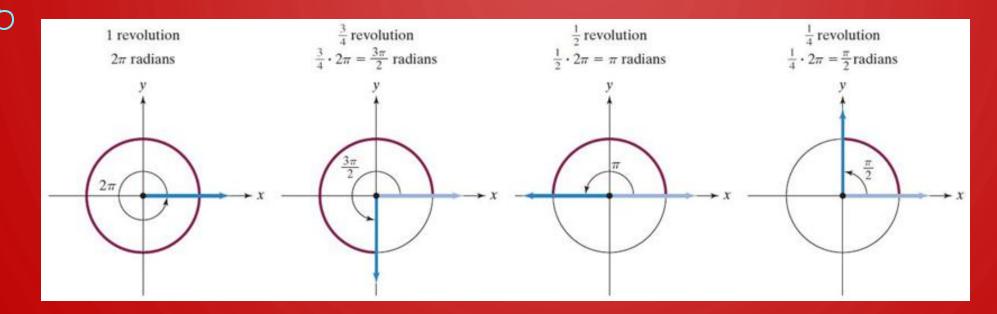
One **radian** is the measure of the central angle of a circle that intercepts an arc equal in length to the radius of the circle.

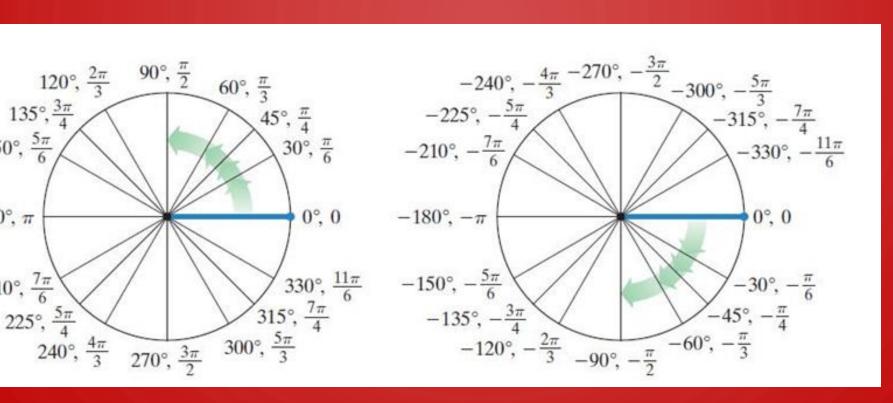




To convert radians to degrees, multiply radians by

$$\frac{180^{\circ}}{\pi \text{ radians}}$$



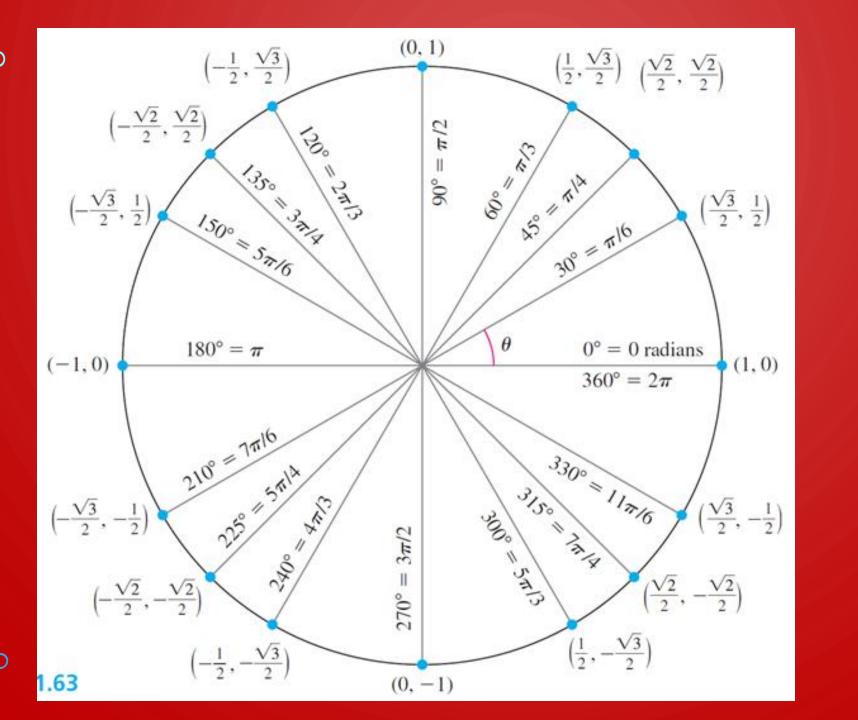


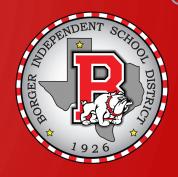
150°, $\frac{5\pi}{6}$

180°, π

210°, $\frac{7\pi}{6}$

270°, $\frac{3\pi}{2}$





Terminal Side	Radian Measure of Angle	Degree Measure of Angle
$\frac{1}{12}$ revolution	$\frac{1}{12} \cdot 2\pi = \frac{\pi}{6}$	$\frac{1}{12} \cdot 360^{\circ} = 30^{\circ}$
$\frac{1}{8}$ revolution	$\frac{1}{8} \cdot 2\pi = \frac{\pi}{4}$	$\frac{1}{8} \cdot 360^{\circ} = 45^{\circ}$
$\frac{1}{6}$ revolution	$\frac{1}{6} \cdot 2\pi = \frac{\pi}{3}$	$\frac{1}{6} \cdot 360^{\circ} = 60^{\circ}$
$\frac{1}{4}$ revolution	$\frac{1}{4} \cdot 2\pi = \frac{\pi}{2}$	$\frac{1}{4} \cdot 360^{\circ} = 90^{\circ}$
$\frac{1}{3}$ revolution	$\frac{1}{3} \cdot 2\pi = \frac{2\pi}{3}$	$\frac{1}{3} \cdot 360^{\circ} = 120^{\circ}$

Ò

Terminal Side	Radian Measure of Angle	Degree Measure of Angle
$\frac{1}{2}$ revolution	$\frac{1}{2} \cdot 2\pi = \pi$	$\frac{1}{2} \cdot 360^{\circ} = 180^{\circ}$
$\frac{2}{3}$ revolution	$\frac{2}{3}\cdot 2\pi = \frac{4\pi}{3}$	$\frac{2}{3} \cdot 360^{\circ} = 240^{\circ}$
$\frac{3}{4}$ revolution	$\frac{3}{4} \cdot 2\pi = \frac{3\pi}{2}$	$\frac{3}{4} \cdot 360^{\circ} = 270^{\circ}$
$\frac{7}{8}$ revolution	$\frac{7}{8} \cdot 2\pi = \frac{7\pi}{4}$	$\frac{7}{8} \cdot 360^{\circ} = 315^{\circ}$
1 revolution	$1.2\pi = 2\pi$	1·360° = 360°

Ò

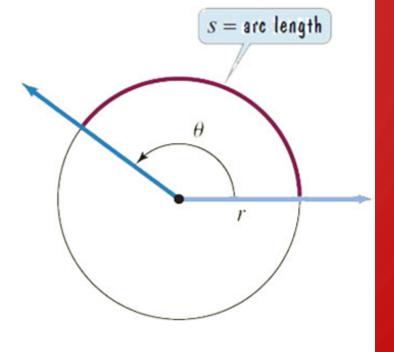
Two angles with the same initial and terminal sides but possibly different rotations are called **coterminal angles**.



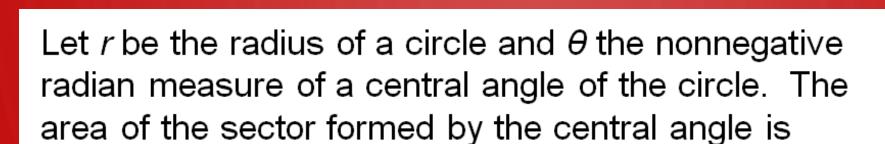
FANKEPHILLERS COLLEGE

Let r be the radius of a circle and θ the nonnegative radian measure of a central angle of the circle.

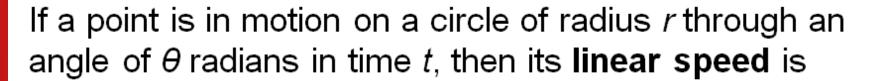
The length of the arc intercepted by the central angle is



$$s = r\theta$$
.



$$A = \frac{1}{2}r^2\theta.$$



$$v = \frac{s}{t}$$

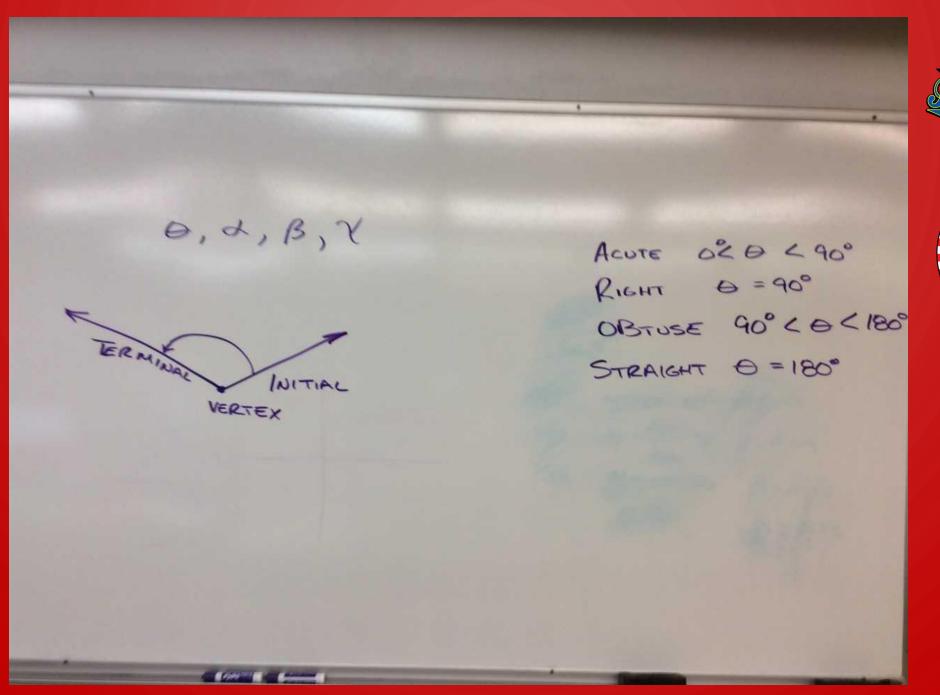
where s is the arc length given by $s = r\theta$, and its **angular speed** is

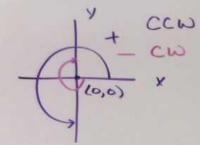
$$\omega = \frac{\theta}{t}$$

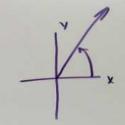
The linear speed, v, of a point a distance r from the center of rotation is given by

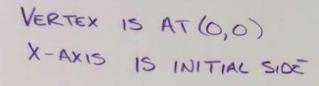
$$v = r\omega$$
,

Where ω is the angular speed in radians per unit of time.









$$30^{\circ} = 30^{\circ} \cdot \frac{\pi}{180^{\circ}} = \frac{\pi}{6} \text{ Radians}$$

$$90^{\circ} = \frac{90^{\circ}\pi}{180^{\circ}} = \frac{\pi}{2}$$

$$-135^{\circ} = -\frac{3\pi}{4}$$

$$\frac{\pi}{3} \cdot \frac{180^{\circ}}{\pi} = 60^{\circ}$$

