BOARD NOTES

29 JANUARY 2019

CC TRIGONOMETRY CHAPTER 1 ANGLES AND TRIGONOMETRIC FUNCTIONS

SECTION 1.3 - Trigonometric

Functions of Any Angle

Objectives:

- Use the definitions of trigonometric functions of any angle
- Use the signs of the trigonometric functions
- Find reference angles
- Use reference angles to evaluate trigonometric functions

Let θ be any angle in standard position and let P = (x, y) be a point on the terminal side of θ . If $r = \sqrt{x^2 + y^2}$ is the distance from (0, 0) to (x, y), the six trigonometric functions of θ are defined by the following ratios:

$$\sin\theta = \frac{y}{r} \qquad \quad \csc\theta = \frac{r}{y}, y \neq 0$$

$$\cos \theta = \frac{x}{r}$$
 $\sec \theta = \frac{r}{x}, x \neq 0$

$$\tan \theta = \frac{y}{x}, x \neq 0 \quad \cot \theta = \frac{x}{y}, y \neq 0$$

Quadrant II

sine and cosecant positive

Quadrant I

All functions positive

Quadrant III

tangent and cotangent positive

Quadrant IV

cosine and secant positive

Let θ be a nonacute angle in standard position that lies in a quadrant. Its reference angle is the positive acute angle

If
$$270^{\circ} < \theta < 360^{\circ}$$
, then $\theta' = 360^{\circ} - \theta$.

CC TRIGONOMETRY CHAPTER 1 ANGLES AND TRIGONOMETRIC FUNCTIONS

SECTION 1.4 - The Unit Circle

Objectives:

- Use the unit circle to define trig functions
- Recognize the domain and range of sine and cosine
- Use even and odd properties
- Use periodic properties

If t is a real number and P = (x, y) is the point on the unit circle that corresponds to t, then

$$\sin t = y$$

$$\csc t = \frac{1}{y}, y \neq 0$$

$$\cos t = x$$

$$\sec t = \frac{1}{x}, x \neq 0$$

$$\tan t = \frac{y}{x}, x \neq 0$$

$$\cot t = \frac{x}{y}, y \neq 0$$

The domain of the sine function and the cosine function is $(-\infty,\infty)$, the set of all real numbers. The range of these functions is [-1, 1], the set of all real numbers from -1 to 1, inclusive.

The cosine and secant functions are even.

$$cos(-t) = cost$$
 $sec(-t) = sect$

The sine, cosecant, tangent, and cotangent functions are **odd**.

$$\sin(-t) = -\sin t$$
 $\csc(-t) = -\csc t$

$$tan(-t) = -tan t$$
 $cot(-t) = -cot t$

$$f(t+p)=f(t)$$

for all t in the domain of f. The smallest positive number p for which f is periodic is called the **period** of f.

$$sin(t + 2\pi n) = sin t$$
,
 $cos(t + 2\pi n) = cos t$,
and $tan(t + \pi n) = tan t$.

P(-1/2)

$$sne = \frac{13}{2}$$
 $csce = \frac{213}{3}$
 $cose = -\frac{1}{2}$ $sece = -2$

$$tane = -13$$
 $cote = -\frac{13}{3}$

sine 3 cose

R: [-1, 1]

D: R