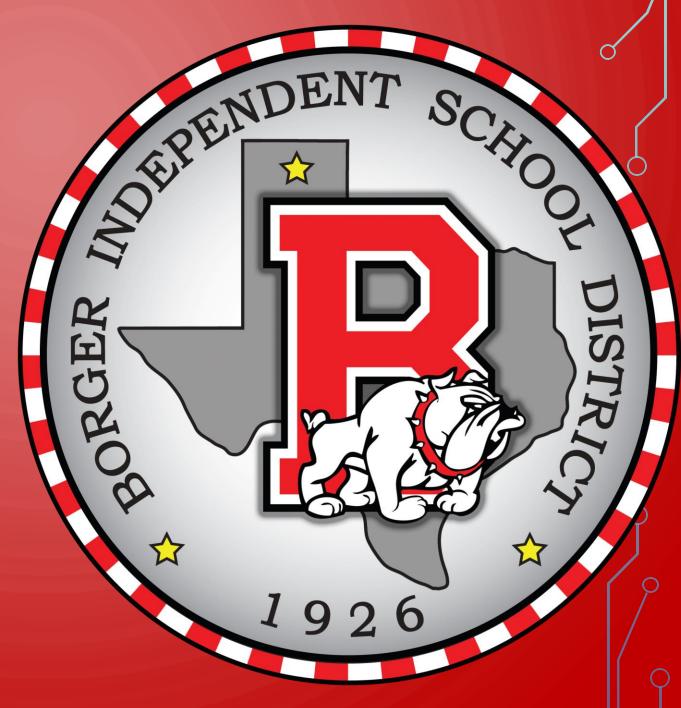
## BOARD NOTES

7 FEBRUARY 2019

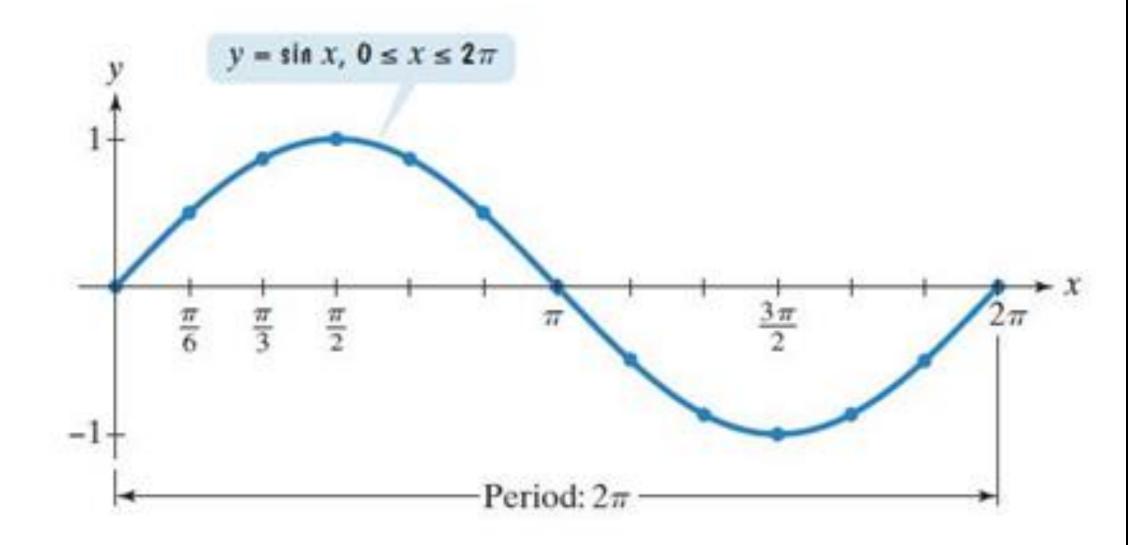


## CC TRIGONOMETRY CHAPTER 2 – GRAPHS OF THE TRIGONOMETRIC FUNCTIONS; INVERSE TRIGONOMETRIC FUNCTIONS



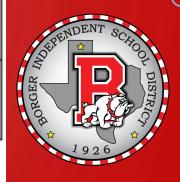
## Objectives:

- Understand the graph of  $y = \sin x$ .
- Graph variations of  $y = \sin x$ .
- Understand the graph of  $y = \cos x$ .
- Graph variations of  $y = \cos x$ .
- Use vertical shifts of sine and cosine curves.
- Model periodic behavior.





| x         | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$     | $\frac{5\pi}{6}$ | π | $\frac{7\pi}{6}$ | $\frac{4\pi}{3}$      | $\frac{3\pi}{2}$ | $\frac{5\pi}{3}$      | $\frac{11\pi}{6}$ | $2\pi$ |
|-----------|---|-----------------|----------------------|-----------------|----------------------|------------------|---|------------------|-----------------------|------------------|-----------------------|-------------------|--------|
| y = sin x | 0 | $\frac{1}{2}$   | $\frac{\sqrt{3}}{2}$ | 1               | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$    | 0 | $-\frac{1}{2}$   | $-\frac{\sqrt{3}}{2}$ | -1               | $-\frac{\sqrt{3}}{2}$ | $-\frac{1}{2}$    | 0      |



As x increases from 0 to  $\frac{\pi}{2}$ , y increases from 0 to 1.

As x increases from  $\frac{\pi}{2}$  to  $\pi$ , y decreases from 1 to 0.

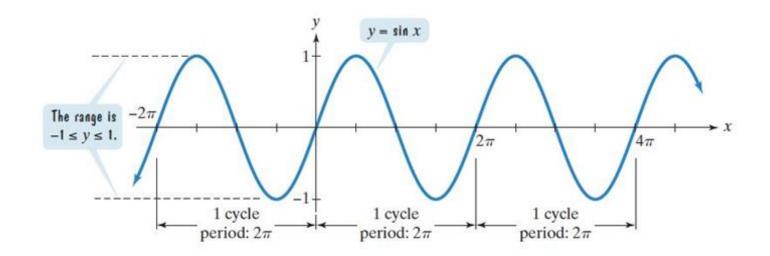
As x increases from  $\pi$  to  $\frac{3\pi}{2}$ , y decreases from 0 to -1.

As x increases from  $\frac{3\pi}{2}$  to  $2\pi$ , y increases from -1 to 0.

The domain is  $(-\infty, \infty)$ . The range is [-1, 1].

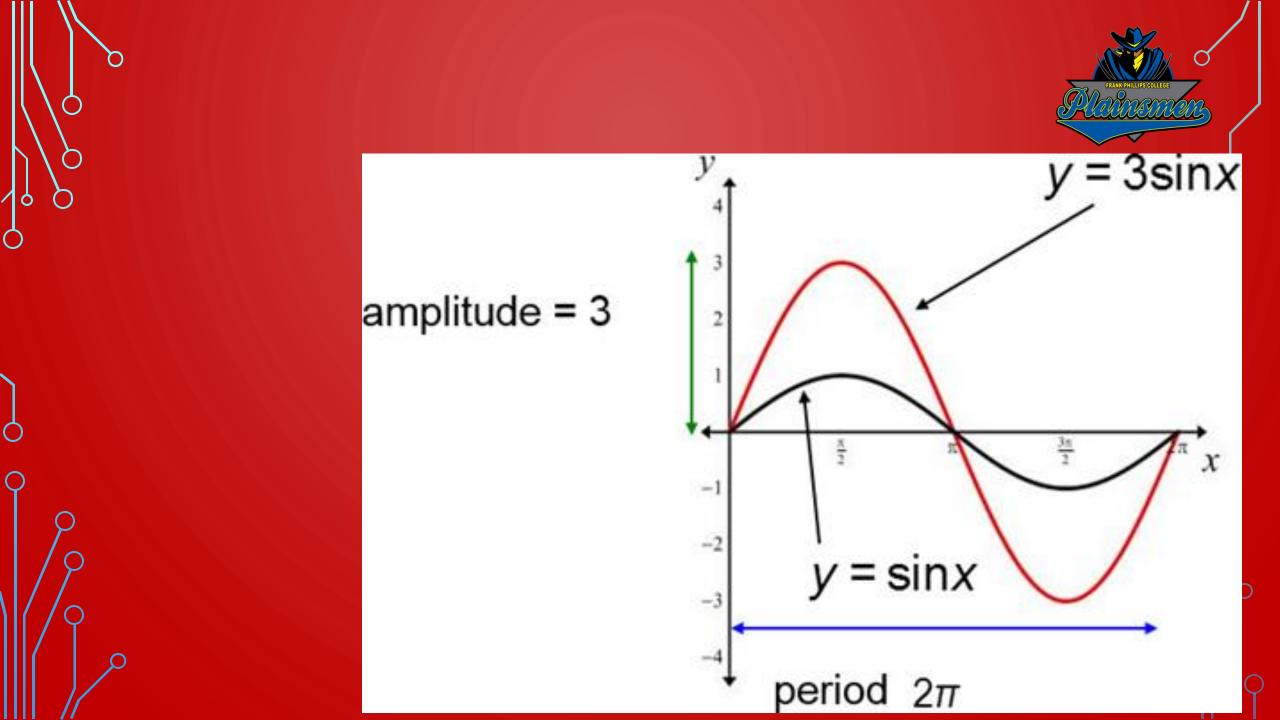
The period is  $2\pi$ .

The function is an odd function: sin(-x) = -sinx.





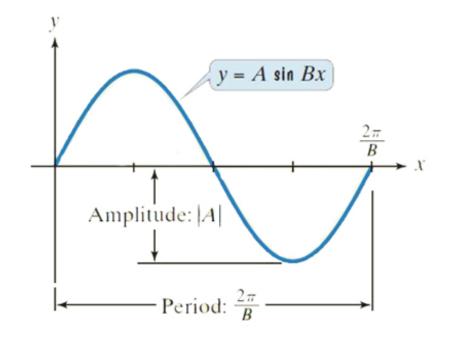
- 1. Identify the amplitude and the period.
- 3. Find the values of *y* for the five key points by evaluating the function at each value of *x* from step 2.
- Connect the five key points with a smooth curve and graph one complete cycle of the given function.
- Extend the graph in step 4 to the left or right as desired.



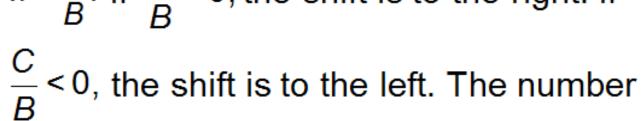
## **Amplitudes and periods**

The graph of  $y = A \sin Bx$ , B > 0, has

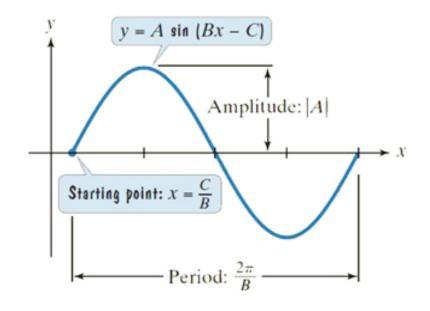
amplitude = 
$$|A|$$
  
period =  $\frac{2\pi}{B}$ .



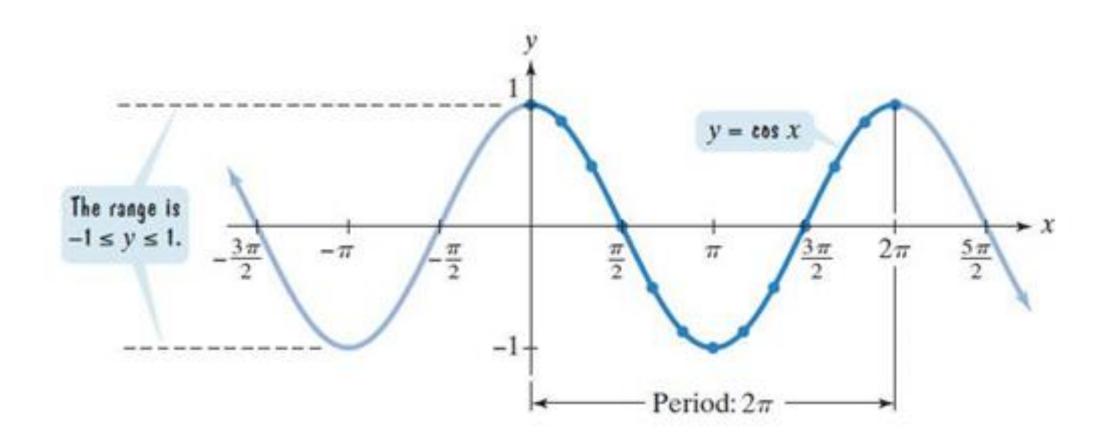
The graph of  $y = A\sin(Bx - C)$ , B > 0, is obtained by horizontally shifting the graph of  $y = A\sin Bx$  so that the starting point of the circle is shifted from x = 0 to  $x = \frac{C}{B}$ . If  $\frac{C}{B} > 0$ , the shift is to the right. If



$$\frac{C}{B}$$
 is called the **phase shift**.



amplitude = 
$$|A|$$
  
period =  $\frac{2\pi}{B}$ 





| x        | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$ | $\frac{5\pi}{6}$      | π  | $\frac{7\pi}{6}$      | $\frac{4\pi}{3}$ | $\frac{3\pi}{2}$ | $\frac{5\pi}{3}$ | $\frac{11\pi}{6}$    | $2\pi$ |
|----------|---|----------------------|-----------------|-----------------|------------------|-----------------------|----|-----------------------|------------------|------------------|------------------|----------------------|--------|
| y= cos x | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$   | 0               | $-\frac{1}{2}$   | $-\frac{\sqrt{3}}{2}$ | -1 | $-\frac{\sqrt{3}}{2}$ | $-\frac{1}{2}$   | 0                | $\frac{1}{2}$    | $\frac{\sqrt{3}}{2}$ | 1      |



As x increases from 0 to  $\frac{\pi}{2}$ , y decreases from 1 to 0.

As x increases from  $\frac{\pi}{2}$  to  $\pi$ , y decreases from 0 to -1.

As x increases from  $\pi$  to  $\frac{3\pi}{2}$ , y increases from -1 to 0.

As x increases from  $\frac{3\pi}{2}$  to  $2\pi$ , y increases from 0 to 1.

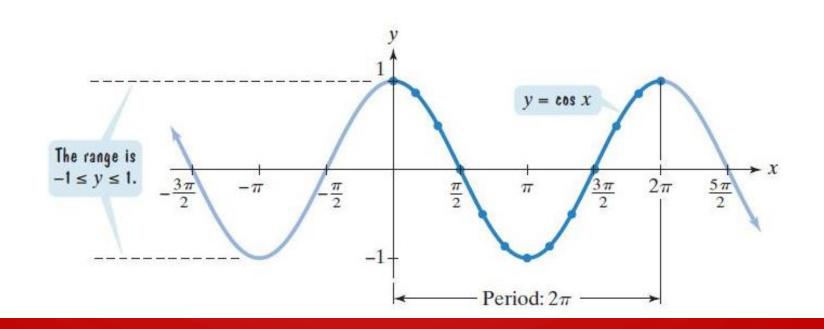




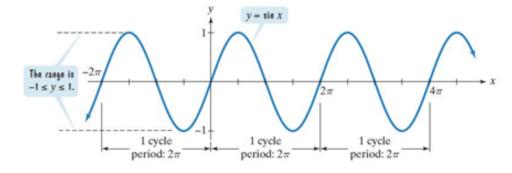
The domain is  $(-\infty,\infty)$ . The range is [-1, 1].

The period is  $2\pi$ .

The function is an even function: cos(-x) = cos x.

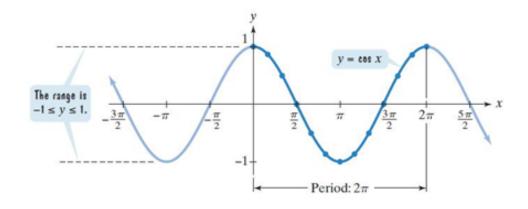


The graphs of sine functions and cosine functions are called sinusoidal graphs.



The graph of  $y = \cos x$  is the graph of  $y = \sin x$  with a phase shift of  $\frac{\pi}{2}$ .

$$\cos x = \sin \left( x + \frac{\pi}{2} \right)$$



For sinusoidal graphs of the form

$$y = A\sin(Bx - C) + D$$
 and  $y = A\cos(Bx - C) + D$ 

the constant D causes a vertical shift in the graph.

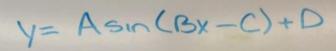
These vertical shifts result in sinusoidal graphs oscillating about the horizontal line y = D rather than about the x-axis.

The maximum value of y is D + |A|.

The minimum value of y is D - |A|.







PHASE SHIFT = 
$$\frac{C}{B} = PS$$

