

7 FEBRUARY 2019

 \square

 \mathbf{a}

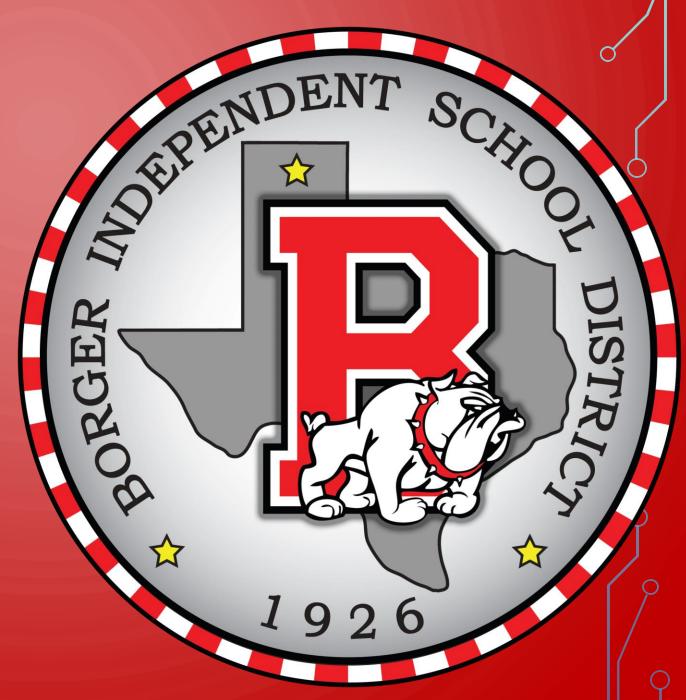
Q

 $\cap \dot{C}$

B

 \mathbb{O}

Q

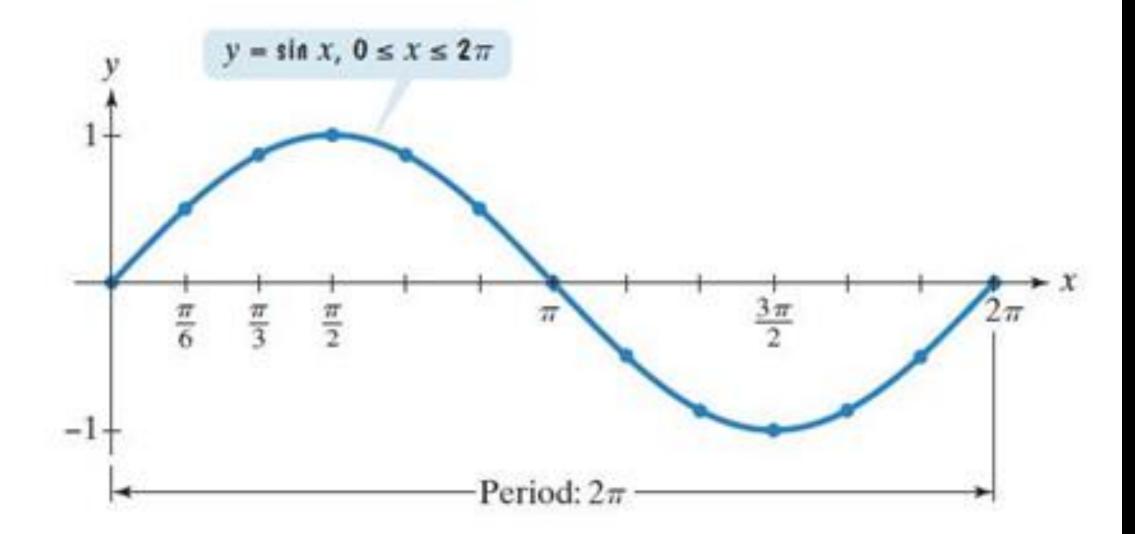


^bCC TRIGONOMETRY CHAPTER 2 – GRAPHS OF THE TRIGONOMETRIC FUNCTIONS; INVERSE TRIGONOMETRIC FUNCTIONS

SECTION 2.1 - Graphs of Sine and Cosine Functions Objectives:

• Understand the graph of $y = \sin x$.

- Graph variations of $y = \sin x$.
- Understand the graph of $y = \cos x$.
- Graph variations of $y = \cos x$.
- Use vertical shifts of sine and cosine curves.
- Model periodic behavior.



x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π	
y = sin x	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	で し で し 低 形 い い し
		from (y inc	to $\frac{\pi}{2}$, to $\frac{\pi}{2}$, reases to 1.		As x increases from $\frac{\pi}{2}$ to π , y decreases from 1 to 0.			As x increases from π to $\frac{3\pi}{2}$, y decreases from 0 to -1.			As x increases from $\frac{3\pi}{2}$ to 2π , y increases from -1 to 0.			

<u>admemen</u>

 \bigcap

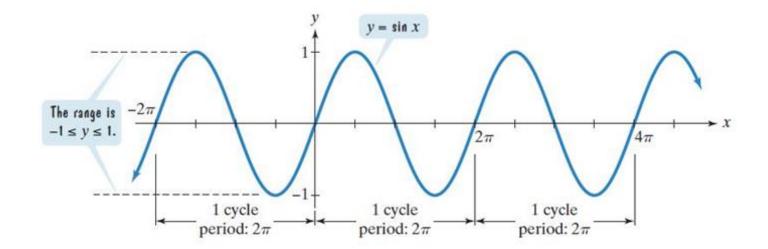
Ó

 \bigcirc

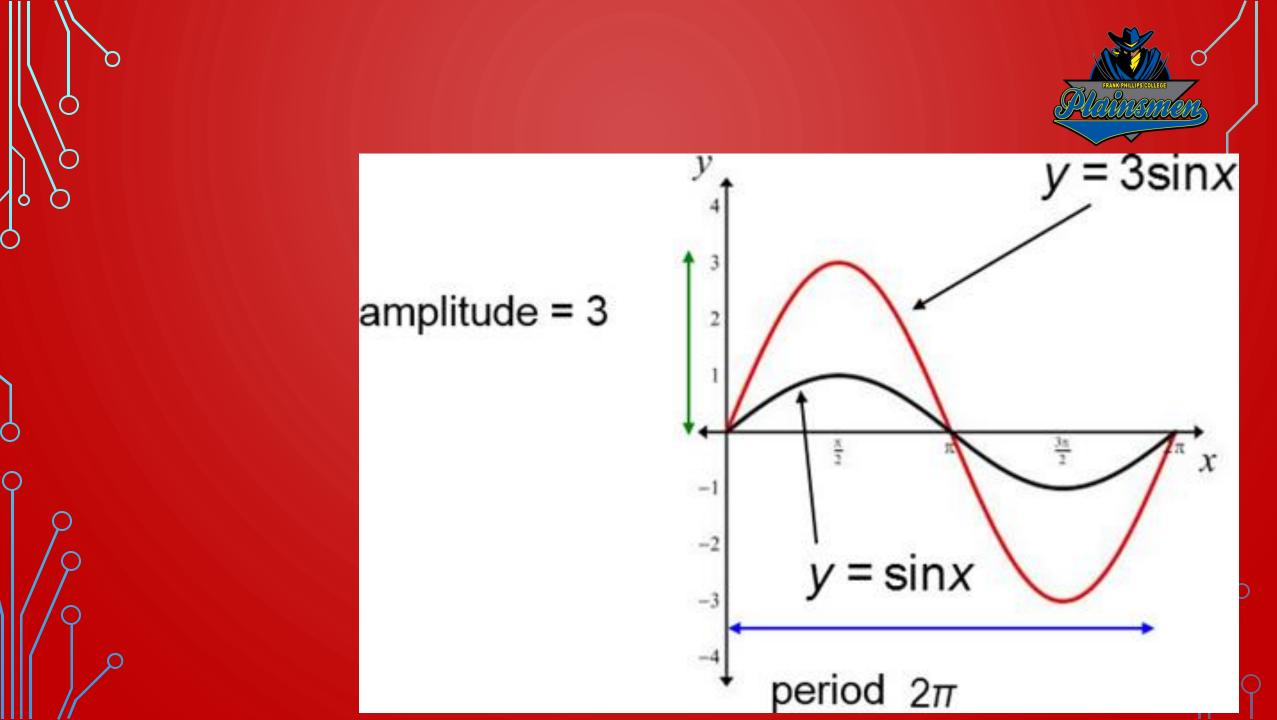
The domain is $(-\infty,\infty)$. The range is [-1, 1].

The period is 2π . The function is an odd function:

 $\sin(-x) = -\sin x$.

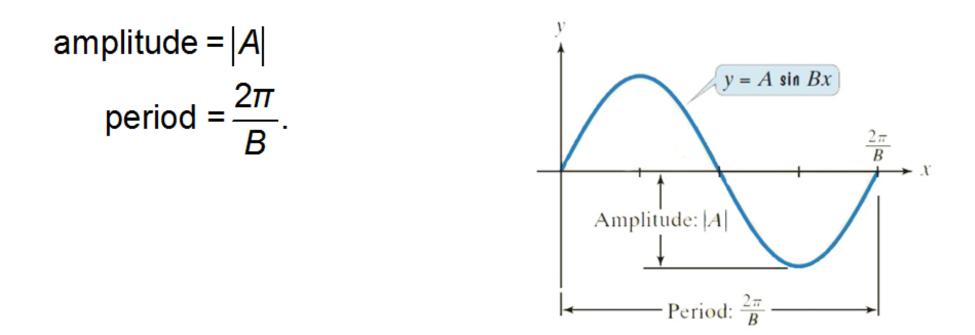


- 1. Identify the amplitude and the period.
- 2. Find the values of x for the five key points—the three x-intercepts, the maximum point, and the minimum point. Start with the value of x where the cycle begins and add quarter-periods—that is, $\frac{\text{period}}{4}$ —to find successive values of x.
- 3. Find the values of *y* for the five key points by evaluating the function at each value of *x* from step 2.
- Connect the five key points with a smooth curve and graph one complete cycle of the given function.
- 5. Extend the graph in step 4 to the left or right as desired.



Amplitudes and periods

The graph of $y = A \sin Bx$, B > 0, has



The graph of $y = A\sin(Bx - C)$, B > 0,

is obtained by horizontally shifting the

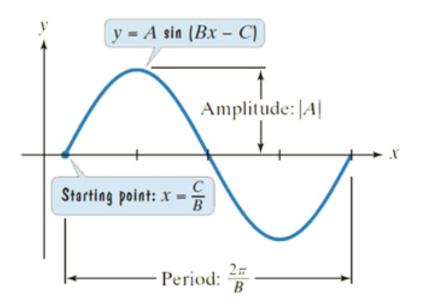
graph of $y = A \sin Bx$ so that the starting

point of the circle is shifted from x = 0 to

$$x = \frac{C}{B}$$
. If $\frac{C}{B} > 0$, the shift is to the right. If

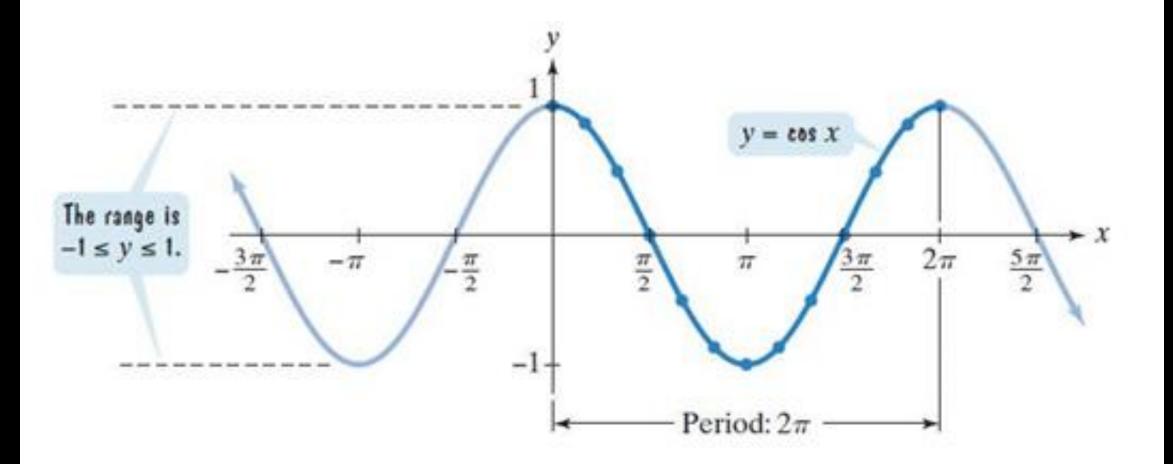
 $\frac{C}{B}$ < 0, the shift is to the left. The number

 $\frac{C}{B}$ is called the **phase shift**.



amplitude =
$$|A|$$

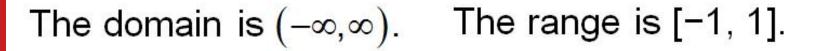
period = $\frac{2\pi}{B}$



x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π	
y= cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	
		As x increases from 0 to $\frac{\pi}{2}$, y decreases from 1 to 0.			As x increases from $\frac{\pi}{2}$ to π , y decreases from 0 to -1.			from π	reases		As x increases from $\frac{3\pi}{2}$ to 2π , y increases from 0 to 1.			

Q

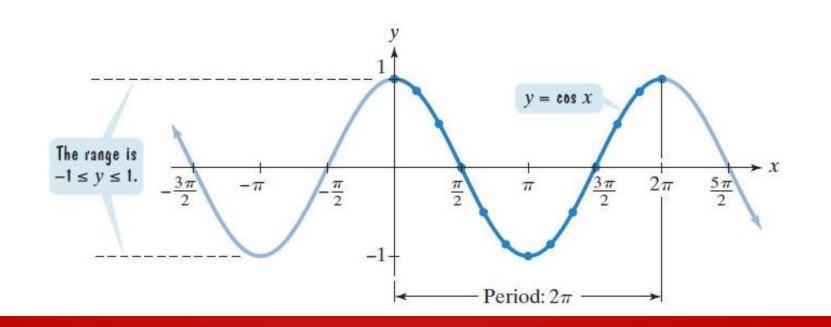
1



The period is 2π .

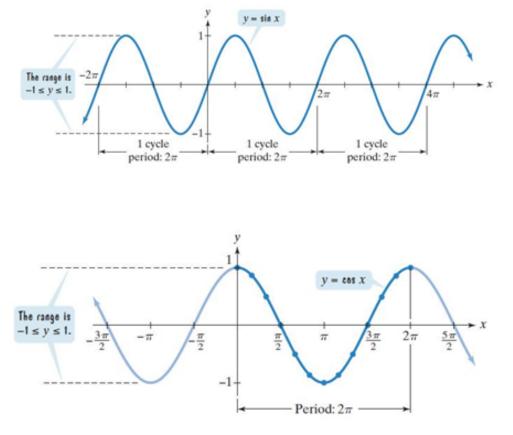
0

The function is an even function: cos(-x) = cosx.



The graphs of sine functions and cosine functions are called sinusoidal graphs.

The graph of $y = \cos x$ is the graph of $y = \sin x$ with a phase shift of $\frac{\pi}{2}$. $\cos x = \sin \left(x + \frac{\pi}{2} \right)$



For sinusoidal graphs of the form

y = Asin(Bx - C) + D and y = Acos(Bx - C) + D

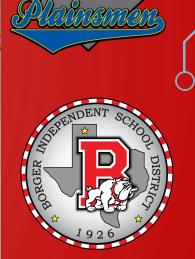
the constant D causes a vertical shift in the graph.

These vertical shifts result in sinusoidal graphs oscillating about the horizontal line y = D rather than about the *x*-axis.

The maximum value of y is D + |A|.

The minimum value of y is D - |A|.

A region that is 30° north of the Equator averages a minimum of 10 hours of daylight in December. Hours of daylight are at a maximum of 14 hours in June. Let *x* represent the month of the year, with 1 for January, 2 for February, 3 for March, and 12 for December. If *y* represents the number of hours of daylight in month *x*, use a sine function of the form $y = A \sin(Bx - C) + D$ to model the hours of daylight.



 $y = A \cos(Bx - C) + D$ = - Sin(x) = cosx A = |A| $T = \frac{2\pi}{B}$ $PS = \frac{C}{B}$

VS= D

DDD Sin(-x) = -Sin(x)EVEN COS(-x) = COSX

.

 \mathcal{O}

0

D

0

-3005 TX D: R R: [-3,3] $\begin{array}{c} R: L\\ A=3\\ T=\frac{2\pi}{\pi}=4 \end{array}$ PS = NONE VS = NONE REFLECT (9) X-AXIS

-3 cos(2x-==)+1 D: R R: [-2,4] $\frac{1}{2}\cos(4x+\pi)$ D: R R: [-12, 1] A = 2 T= T= T PS= # $PS = -\frac{\pi}{4}$ VS= 1 RO X-AXIS VS= NONE

Statement in Manhatman

3

TI

A=

