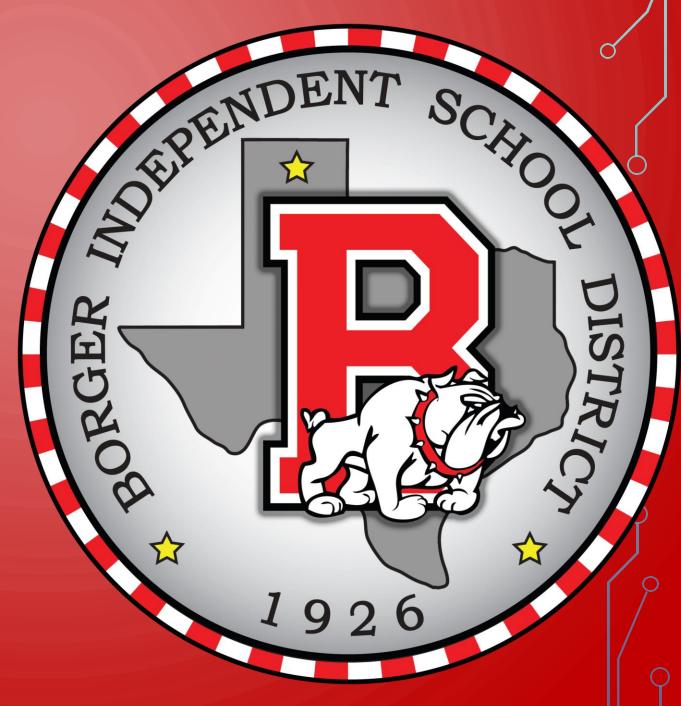
BOARD NOTES

12 FEBRUARY 2019

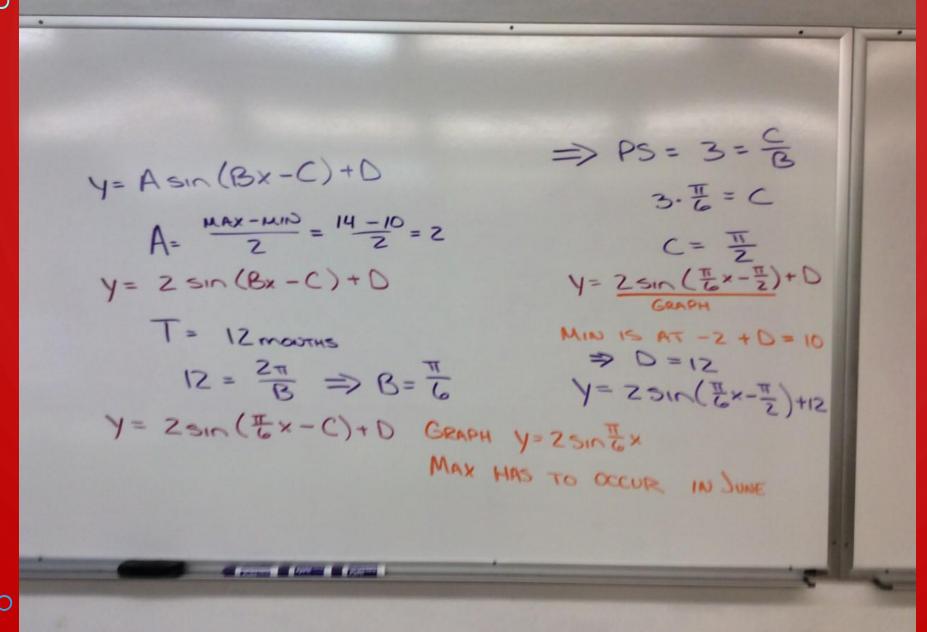


CC TRIGONOMETRY CHAPTER 2 – GRAPHS OF THE TRIGONOMETRIC FUNCTIONS; INVERSE TRIGONOMETRIC FUNCTIONS

Objectives:

- Understand the graph of $y = \sin x$.
- Graph variations of $y = \sin x$.
- Understand the graph of $y = \cos x$.
- Graph variations of $y = \cos x$.
- Use vertical shifts of sine and cosine curves.
- Model periodic behavior.

A region that is 30° north of the Equator averages a minimum of 10 hours of daylight in December. Hours of daylight are at a maximum of 14 hours in June. Let x represent the month of the year, with 1 for January, 2 for February, 3 for March, and 12 for December. If y represents the number of hours of daylight in month x, use a sine function of the form $y = A \sin(Bx - C) + D$ to model the hours of daylight.



EXAMPLE 10 Modeling a Tidal Cycle

Figure 2.19 shows that the depth of water at a boat dock varies with the tides. The depth is 5 feet at low tide and 13 feet at high tide. On a certain day, low tide occurs at 4 A.M. and high tide at 10 A.M. If y represents the depth of the water, in feet, x hours after midnight, use a sine function of the form $y = A \sin(Bx - C) + D$ to model the water's depth.

The Number of Hours after Midnight

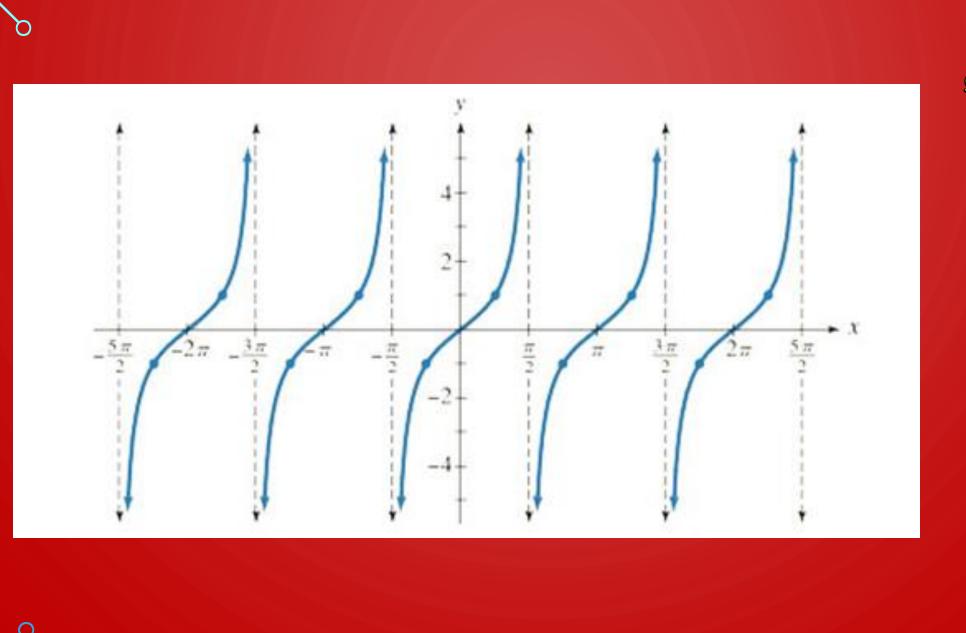
FIGURE 2.19

CC TRIGONOMETRY CHAPTER 2 – GRAPHS OF THE TRIGONOMETRIC FUNCTIONS; INVERSE TRIGONOMETRIC FUNCTIONS

SECTION 2.2 - Graphs of Other Trigonometric Functions

Objectives:

- Understand the graph of $y = \tan x$
- Graph variations of $y = \tan x$.
- Understand the graph of $y = \cot x$.
- Graph variations of $y = \cot x$.
- Understand the graph of $y = \sec x \& y = \csc x$.
- Graph variations of $y = \sec x \& y = \csc x$.



Q

The Graph of $y = \tan x$

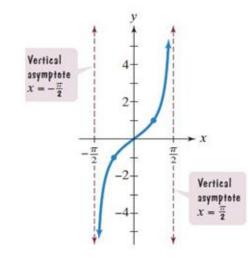
×	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}(75^\circ)$	$\frac{17\pi}{36}$ (85°)	$\frac{89\pi}{180} (89^\circ)$	1.57	$\frac{\pi}{2}$
y = tan x	0	$\frac{\sqrt{3}}{3} \approx 0.6$	1	$\sqrt{3} \approx 1.7$	3.7	11.4	57.3	1255.8	undefined

As x increases from 0 toward $\frac{\pi}{2}$, y increases slowly at first, then more and more rapidly.

Period: π

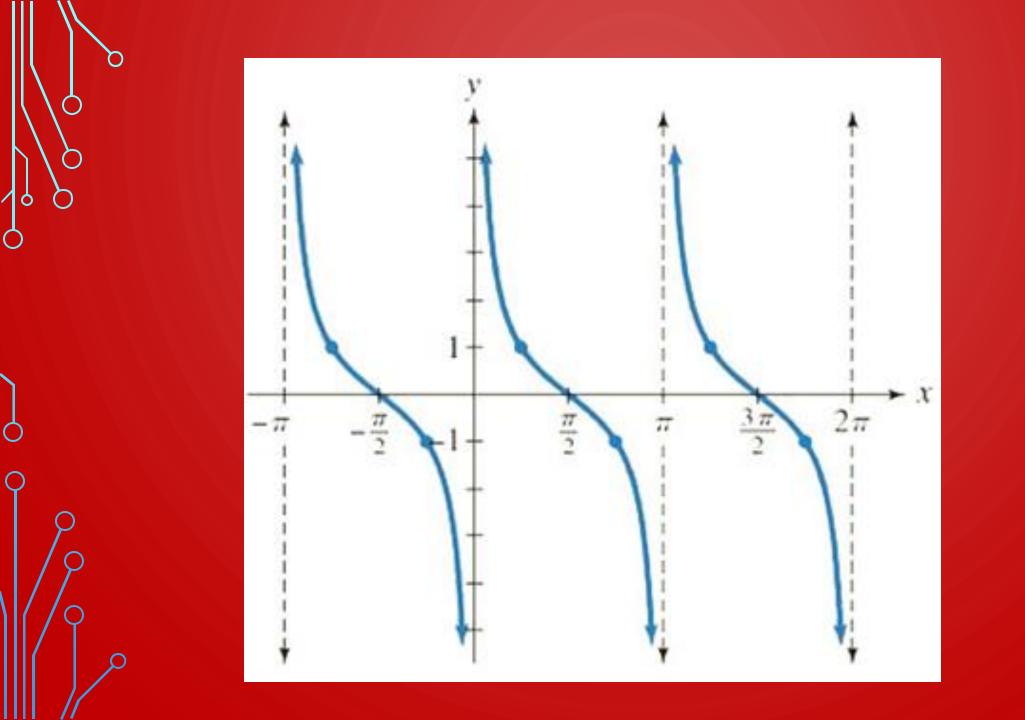
The tangent function is an odd function. tan(-x) = -tan x

The tangent function is undefined at odd multiples of $x = \frac{\pi}{2}$.

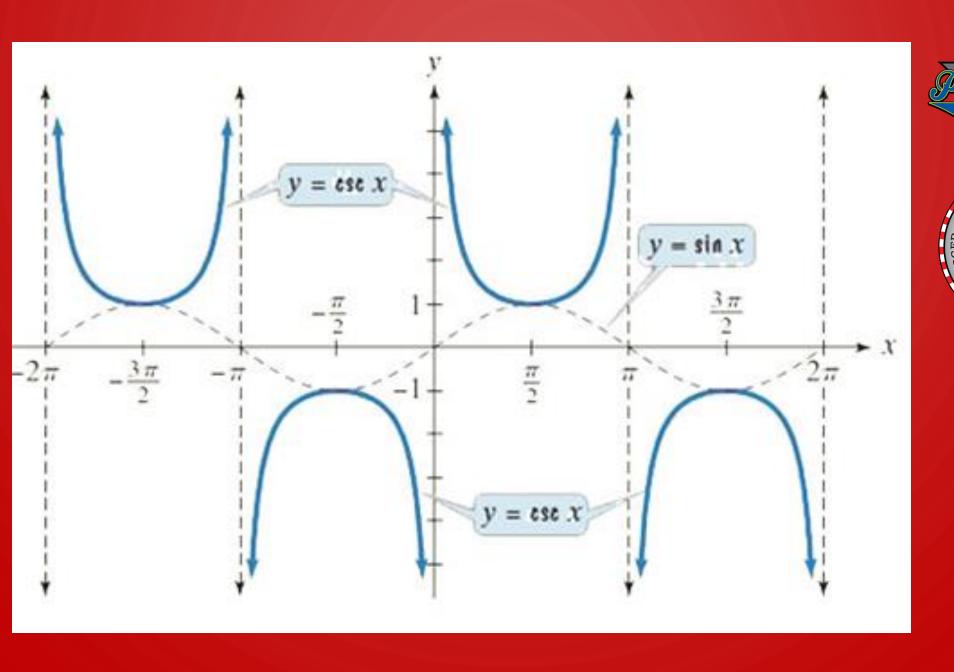


Characteristics

- Period: π
- **Domain:** All real numbers except odd multiples of $\frac{\pi}{2}$
- Range: All real numbers
- Vertical asymptotes at odd multiples of $\frac{\pi}{2}$
- An x-intercept occurs midway between each pair of consecutive asymptotes
- Odd function with origin symmetry
- Points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between consecutive asymptotes have *y*-coordinates of -1 and 1, respectively.



- Period: π
- **Domain:** All real numbers except integral multiples of π
 - Range: all real numbers
- Vertical asymptotes at integral multiples of π
- An x-intercept occurs midway between each pair of consecutive asymptotes
- Odd function with origin symmetry
- Points on the graph ¹/₄ and ³/₄
 of the way between consecutive asymptotes have *y*-coordinates of 1 and -1, respectively.



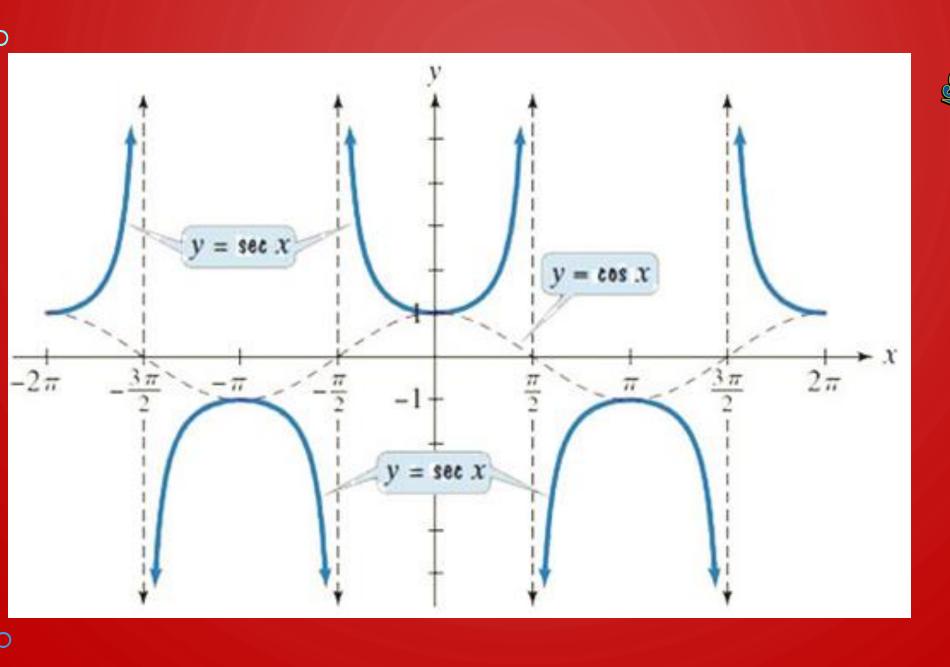
Period: 2π

Domain: All real numbers except integral multiples of π

Range: All real numbers y such that $y \le -1$ or $y \ge 1: (-\infty, -1] \cup [1, \infty)$

Vertical asymptotes at integral multiples of π

Odd functions, csc(-x) = -csc x, with origin symmetry



- Period: 2π
- **Domain:** All real numbers except odd multiples of $\frac{\pi}{2}$
- Range: All real numbers y such that $y \le -1$ or $y \ge 1: (-\infty, -1] \cup [1, \infty)$
- Vertical asymptotes at odd multiples of $\frac{\pi}{2}$
- Even functions, sec(-x) = sec x, with y-axis symmetry

