

2A. 2 (A) graph the functions $f(x)=x^{2}, f(x)=\sqrt{x}=\sqrt[2]{x}$, $f(x)=1 / x, f(x)=\sqrt[3]{x}, f(x)=x^{3}, f(x)=|x|, f(x)=b^{x}$, $f(x)=\log _{b} x$ where b is 2,10 , and e , and, when applicable, analyze the key attributes such as domain, range, intercepts, symmetries, asymptotic behavior, and maximum and minimum given an interval; 2A. 2 (D) use the composition of two functions, including the necessary restrictions on the domain, to determine if the functions are inverses of each other;
2A. 7 (I) write the domain and range of a function in interval notation, inequalities, and set notation.

We will be able to perform operations on functions.

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVING THE

- TI-84
- Definition of:
- Domain
- Range
- Intercepts
- Increasing vs Decreasing
- Domain
- Range
- Intercepts (if any)
- Intervals of:
- Increasing
- Decreasing
- Constant

$$
\begin{aligned}
-f(x) & =-y \\
& =-\left(2 x^{2}+x-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad(f)(g \circ f)(x) \\
& \begin{aligned}
y=f(x) \quad & +,-x, \div, \\
f(x) & =x^{2}-3 x+2 \quad g(x)=2 x-4 \\
(f+g)(x) & =f(x)+g(x) \\
& =x^{2}-3 x+2+2 x-4 \\
& =x^{2}-x-2
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
(f g)(x) & =f(x) g(x) \\
& =\left(x^{2}-3 x+2\right)(2 x-4) \\
& =2 x^{3}-4 x^{2}-6 x^{2}+12 x+4 x-8 \\
& =2 x^{3}-10 x^{2}+16 x-8
\end{aligned}
$$

$$
\begin{array}{rlrl}
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} & (f \circ g)(x) & =f(g(x)) \\
& =\frac{x^{2}-3 x+2}{2 x-4} & & (2 x-4)^{2}-3(2 x-4)+2 \\
(2 x-4)^{2} & =(2 x-4)(2 x-4) \\
& =4 x^{2}-8 x-8 x+16 \\
& =4 x^{2}-16 x+16 \\
& =4 x^{2}-16 x+16-6 x+12+2 \\
& =4 x^{2}-22 x+30
\end{array}
$$

$$
\begin{array}{llrl}
-3(2 x-4)+2 & f(x)=\frac{4}{x} & g(x)=\frac{2 x}{x-2} \\
\begin{array}{lll}
-3)(2 x-4) & (f g)(1) & (f-g)(x)
\end{array}=\frac{4}{x}-\frac{2 x}{x-2} \quad C D: x(x-2) \\
-8 x-8 x+16 & =\left(\frac{4}{1}\right)\left(\frac{2 \cdot 1}{1-2}\right) & \frac{1}{4}+\frac{1}{3} & =\frac{3}{12}+\frac{4}{12} \\
-16 x+16 & & =\frac{4(x-2)}{x(x-2)}-\frac{2 x(x)}{x(x-2)} \\
x+30 & & =\frac{4 x-8-2 x^{2}}{x(x-2)}
\end{array}
$$

