

2A. 2 (B) graph and write the inverse of a function using notation such as $f^{-1}(x)$;
2A. 2 (C) describe and analyze the relationship between a function and its inverse (quadratic and square root, logarithmic and exponential), including the restriction(s) on domain, which will restrict its range;
2A. 2 (D) use the composition of two functions, including the necessary restrictions on the domain, to determine if the functions are inverses of each other.
2A. 5 (C) rewrite exponential equations as their corresponding logarithmic equations and logarithmic equations as their corresponding exponential equations;

We will be able to use the composition of two functions, including the necessary restrictions on the domain, to determine if the functions are inverses of each other.

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- TI-84
- Equations

Operations and Composition of Functions

Sum:
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$(f-g)(x)=f(x)-g(x)$
$(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})$
$(f / g)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$
Composite:
$(f \circ g)(x)=f(g(x))$

The exponential function \boldsymbol{f} with base \boldsymbol{b} is defined by

$$
f(x)=b^{x} \quad \text { or } \quad y=b^{x},
$$

where b is a positive constant other than 1 ($b>0$ and $b \neq 1$) and x is any real number.

For $x>0$ and $b>0, b \neq 1$,

$$
y=\log _{b} x \text { is equivalent to } b^{y}=x .
$$

The function $f(x)=\log _{b} x$ is the logarithmic function with base b.

The equation of the inverse of an exponential function can be written as the logarithmic function of the same base.

Conversely, the inverse of a logarithmic function is the exponential function of the same base.

They are inverses of each other.

$$
\begin{aligned}
& f(x)=3 x-5 \\
& D: R \\
& R: R \\
& y=3 x-5 \\
& x=3 y-5 \\
& x+5=3 y \\
& y=\frac{x}{3}+\frac{5}{3} \\
& f^{-1}(x)=\frac{x}{3}+\frac{5}{3} \\
& D: R \\
& R: R
\end{aligned}
$$

$$
\begin{aligned}
& (12,1)(-3,5)(4,3)(10,7)(6,-12) \quad y=x^{2}+1 \\
& \underset{(1,12)}{\text { INUERE }}(5,-3)(3,4)(7,10)(-12,6) \\
& \begin{array}{ll:l}
(1,12)(5,-3) & (3,4)(7,10) & (-12,6) \\
\log _{3} 81=4 \equiv 3^{4}=81 & \log _{216}= & =\frac{1}{3}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
f(x)=7 x+15 \quad g(x)=\frac{x-15}{7} \\
f(g(x))=g(f(x))=x \\
(1)
\end{gathered}
$$

(1)

$$
\begin{aligned}
f(g(x)) & =7\left(\frac{x-15}{7}\right)+15 \\
& =x-15+15 \\
& =x
\end{aligned}
$$

(2)

$$
\begin{aligned}
g(f(x)) & =\frac{(7 x+15)-15}{7} \\
& =\frac{7 x}{7} \\
& =x
\end{aligned}
$$

It is Not this

$$
f(x)=7 x+15
$$

$$
x=7 y+15
$$

$$
\begin{array}{r}
x-15=7 y \\
x-15
\end{array}
$$

$$
y=\frac{x-15}{7}
$$

This is Findings Inverse

$$
\begin{gathered}
f(x)=.5^{x} \\
D: \mathbb{R} \\
R:(0, \infty) \\
g(x)=\log _{.5}^{x} \\
D:(0, \infty) \\
R: \mathbb{R}
\end{gathered}
$$

