

2A. 7 (B) add, subtract, and multiply polynomials; 2A. 7 (C) determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two; 2A. 7 (D) determine the linear factors of a polynomial function of degree three and of degree four using algebraic methods;

We will be able to define a polynomial given a function.

WHAT WE NEED:

- Definition of polynomial

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Function

Let n be a nonnegative integer and let $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ be real numbers, with $a_{n} \neq 0$. The function defined by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

is called a polynomial function of degree n. The number a_{n}, the coefficient of the variable to the highest power, is called the leading coefficient.

Laws of Exponents

If s, t, a, and b are real numbers with $a>0$ and $b>0$, then

$$
\begin{aligned}
a^{s} \cdot a^{t} & =a^{s+t} & \left(a^{s}\right)^{t} & =a^{s t} \\
1^{s} & =1 & a^{-s} & =\frac{1}{a^{s}}=\left(\frac{1}{a}\right)^{s}
\end{aligned} a^{0}=1
$$

$$
\begin{aligned}
& \left(a^{s}\right)^{t}=a^{s t} \\
& \frac{1}{a^{s}}=a^{-s} \\
& a^{s} \cdot a^{t}=a^{s+t}
\end{aligned}
$$

HW $\begin{array}{r}1-10 \\ 12^{\frac{1}{3}} 14\end{array}$

$$
\begin{aligned}
& f(x)=3 x^{(4)}+c_{2} x^{3}-5 x^{0} \\
& Y_{E S}, \text { DEGREE } 4, \text { Terus } 3 \\
& f(x)=2 \sqrt{x}+8 \quad \sqrt[2]{x}=x^{\frac{1}{2}} \\
& \text { No, } x^{\frac{1}{2}}
\end{aligned}
$$

ㄱ)

$$
\begin{array}{cc}
5 x(x-3)^{2}=f(x) & x \cdot x^{2}=x^{1+2}=x^{3} \\
y_{E S}, 3,3 & (x-3)(x-3) \\
3 \text { TERUS }
\end{array}
$$

FACTOREO
FORM
8) $f(x)=5^{x}+3$

No, Expanential x is the Pouer

FORM

$$
f(x)=(x-2)(x+3)
$$

$$
\text { ZEROS }-3,2
$$

$$
\begin{aligned}
& f(x)=x(x-4)^{2} \\
& 3, \text { ZEROS } 0,4
\end{aligned}
$$

