

2A. 7 (B) add, subtract, and multiply polynomials; 2A. 7 (C) determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two; 2A. 7 (D) determine the linear factors of a polynomial function of degree three and of degree four using algebraic methods;

We will be able to use long or synthetic division to determine the quotient of a polynomial.

> I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Definition of polynomial
- Laws of Exponents
- Addition and Subtraction of Polys
- Multiplication of Polys

Special Products

There are several products that occur so frequently that it's convenient to memorize the form, or pattern, of these formulas. If A and B represent real numbers, variables, or algebraic expressions, then:
$(A+B)(A-B)=A^{2}-B^{2}$
Product of the Sum and Difference of Two Terms
$(A+B)^{2}=A^{2}+2 A B+B^{2}$
$(A-B)^{2}=A^{2}-2 A B+B^{2}$
Squaring a Binomial

Division Algorithm for Polynomials

If $f(x)$ and $g(x)$ denote polynomial functions and if $g(x)$ is a polynomial whose degree is greater than zero, then there are unique polynomial functions $q(x)$ and $r(x)$ such that

$$
\frac{f(x)}{g(x)}=q(x)+\frac{r(x)}{g(x)} \quad \text { or } \quad f(x)=q(x) g(x)+r(x)
$$

dividend quotient divisor remainder
Where $r(x)$ is either the zero polynomial or a polynomial of degree less than that of $g(x)$.

SYNTHETIC CAN ONLY BE DONE WITH A LINEAR DIVISOR! IE $x-c$ OR

$$
\begin{aligned}
& f(x)=x^{3}+10 x^{2}+32 x+32 \\
& \begin{array}{ll}
\text { Divisor } x+4 & \text { (3) -4 } \\
\begin{array}{ll}
\text { (1) } x+4 & x+1 \\
x & 1 \\
x & -4
\end{array}
\end{array}
\end{aligned}
$$

(2) $1 \begin{array}{lllll}10 & 32 & 32 \begin{array}{c}\text { MuLTIPLy } \\ \mathrm{By}_{4} \\ 1\end{array}\end{array}$

MY Quotient 15 $x^{2}+6 x+8$

$$
\begin{gathered}
f(x)=x^{5}-3 x^{3}+8 x^{2}-24 \\
d(x)=x-3 \\
3
\end{gathered} \begin{array}{rrrrrr}
1 & 0 & -3 & 8 & 0 & -24 \\
+ & 6 & 18 & 78 & 234 \\
\hline
\end{array}
$$

