

2A. 7 (B) add, subtract, and multiply polynomials; 2A. 7 (C) determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two; 2A. 7 (D) determine the linear factors of a polynomial function of degree three and of degree four using algebraic methods;
2A. 7 (E) determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping;

We will be able to determine the factors of special binomial and trinomial polynomials.

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Definition of polynomial
- Laws of Exponents
- Addition and Subtraction of Polys
- Multiplication of Polys
- Division of Polys

FACTORING POLYNOMIALS FLOW CHART

Factoring Polynomials

Factoring a polynomial expressed as the sum of monomials means finding an equivalent expression that is a product. The goal in factoring a polynomial is to use one or more factoring techniques until each of the polynomial's factors, except possibly for a monomial factor, is prime or irreducible. In this situation, the polynomial is said to be factored completely.

The Difference of Two Squares

If A and B are real numbers, variables, or algebraic expressions, then

$$
A^{2}-B^{2}=(A+B)(A-B) .
$$

In words: The difference of the squares of two terms factors as the product of a sum and a difference of those terms.

Factoring Perfect Square Trinomials

Let A and B be real numbers, variables, or algebraic expressions.

1. $A^{2}+2 A B+B^{2}=(A+B)^{2}$
2. $A^{2}-2 A B+B^{2}=(A-B)^{2}$

$$
\begin{aligned}
& x^{2}-9=(x-3)(x+3) \\
& A=x= \\
& B=3
\end{aligned}
$$

$$
4 x^{2}-y^{2}=(2 x-y)(2 x+y)
$$

$$
A=2 x
$$

$$
\begin{aligned}
& x^{2}+12 x+36=(x+6)^{2} \\
& \begin{aligned}
A & =x \\
B & =6 \\
2 A B & =2 \cdot x \cdot 6 \\
& =12 x
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-4 x+4=(x-2)^{2} \\
& 4 x^{4}-\sqrt{20 x^{2}}+25=\left(2 x^{2}-5\right)^{2} \\
& A=2 x^{2} \\
& B=5 \\
& 2 A B=2 \cdot 2 x^{2} \cdot 5 \\
& =20 x^{2} \\
& 3 x^{3}-6 x^{2}+3 x=3 x(x-1)^{2}
\end{aligned}
$$

