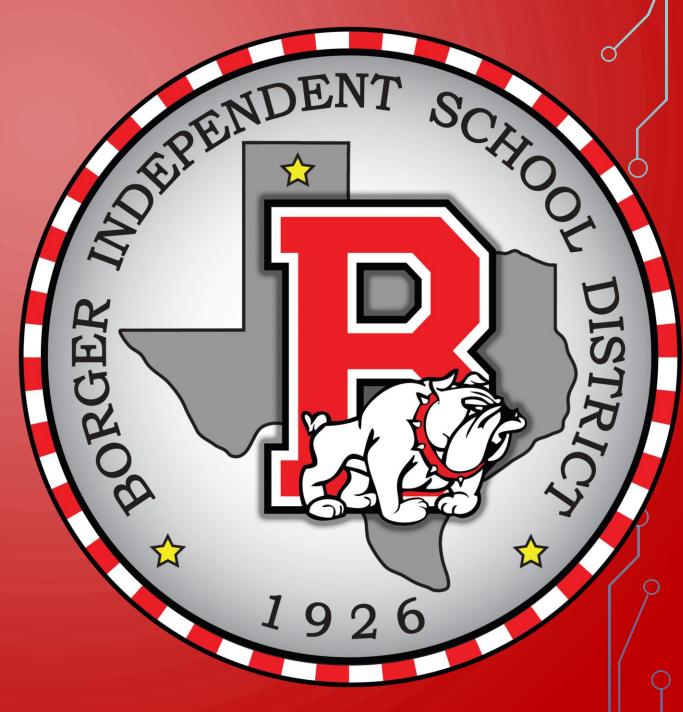
BOARD NOTES

11 NOVEMBER 2019



2A.7 (B) add, subtract, and multiply polynomials; 2A.7 (C) determine the quotient of a polynomial of degree three and of degree four when divided by a polynomial of degree one and of degree two; 2A.7 (D) determine the linear factors of a polynomial function of degree three and of degree four using algebraic methods; 2A.7 (E) determine linear and quadratic factors of a polynomial expression of degree three and of degree four, including factoring the sum and difference of two cubes and factoring by grouping;

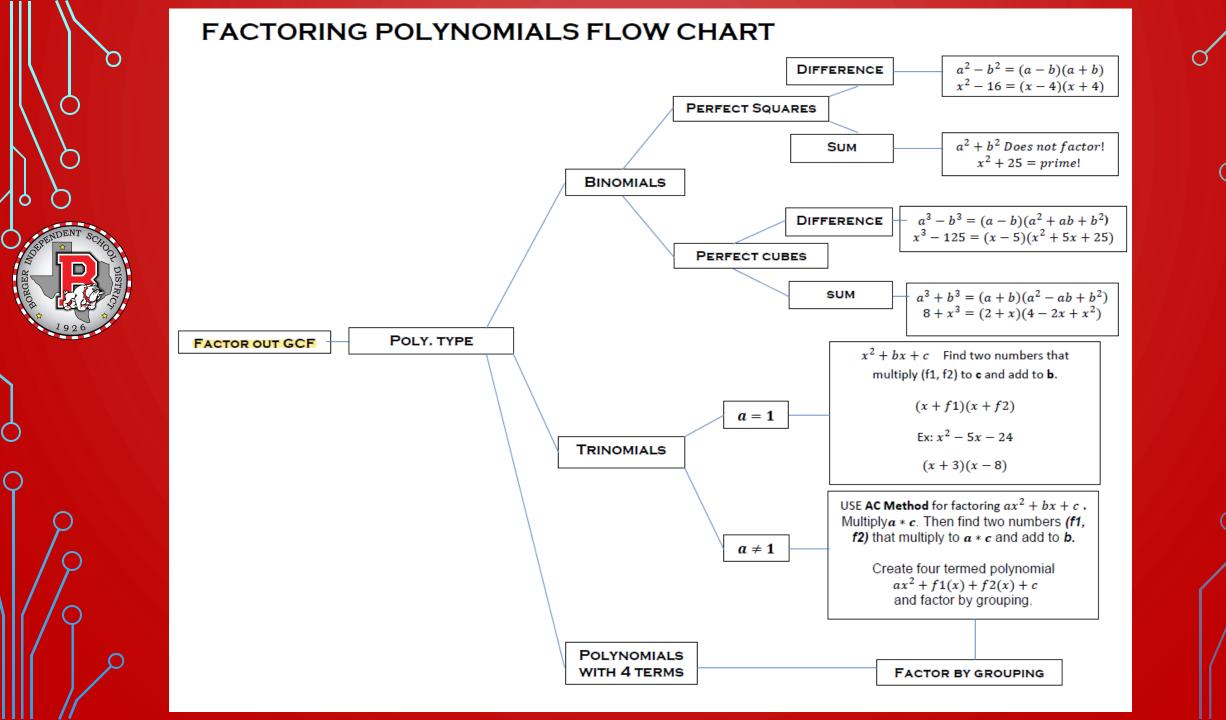
We will be able to determine the factors of trinomial polynomials.

WHAT WE NEED:

- Definition of polynomial
- Laws of Exponents
- Addition and Subtraction of Polys
- Multiplication of Polys
- Division of Polys

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

Polynomial



DISTRICAL TO DISTR

A Strategy for Factoring $ax^2 + bx + c$

Assume, for the moment, that there is no greatest common factor.

1. Find two First terms whose product is ax^2 :

$$(\Box x +)(\Box x +) = ax^2 + bx + c.$$

2. Find two Last terms whose product is *c*:

$$(\Box x + \Box)(\Box x + \Box) = ax^2 + bx + c.$$

3. By trial and error, perform steps 1 and 2 until the sum of the Outside product and Inside product is bx:

$$(\Box x + \Box)(\Box x + \Box) = ax^2 + bx + c.$$
Sum of O + I

If no such combination exists, the polynomial is prime.

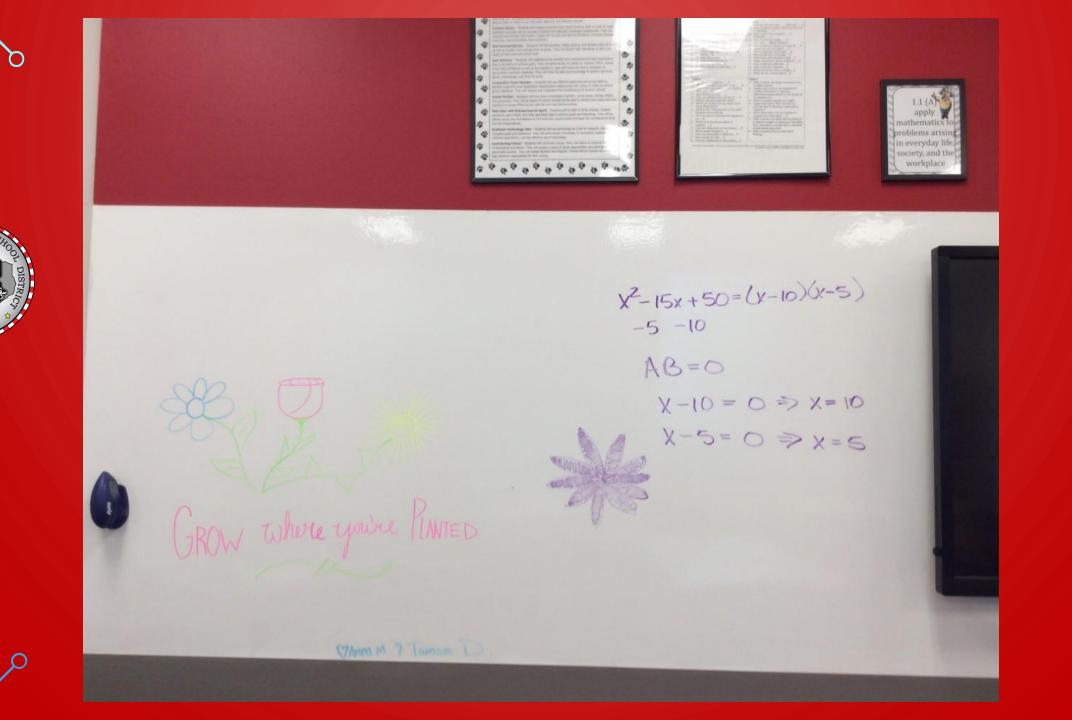
$$ax^{2}+bx+c = (x+f, xx+f^{2})$$

 $ax^{2}-bx-c = (x-f, (x+f^{2})$
 $ax^{2}-bx-c = (x-f, (x+f^{2})$

$$\chi^{2} + 6x + 5 = (x + 1)(x + 5)$$
 $1 + 5 = 6$

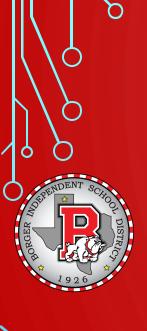
$$x^{2}-1x+9=(x-)(x-)$$
 PRIME
-1-9=-10
-3-3=-6

$$x^{2}+2x-15=(x-3)(x+5)$$
 $x^{2}-6x+24$
 $x^{$



Factoring Polynomials

Factoring a polynomial expressed as the sum of monomials means finding an equivalent expression that is a product. The goal in factoring a polynomial is to use one or more factoring techniques until each of the polynomial's factors, except possibly for a monomial factor, is prime or irreducible. In this situation, the polynomial is said to be **factored completely**.



Greatest Common Factor

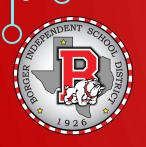
The **greatest common factor**, abbreviated GCF, is an expression of the highest degree that divides each term of the polynomial.

The Difference of Two Squares

If A and B are real numbers, variables, or algebraic expressions, then

$$A^2 - B^2 = (A + B)(A - B).$$

In words: The difference of the squares of two terms factors as the product of a sum and a difference of those terms.



Factoring Perfect Square Trinomials

Let A and B be real numbers, variables, or algebraic expressions.

1.
$$A^2 + 2AB + B^2 = (A + B)^2$$

2.
$$A^2 - 2AB + B^2 = (A - B)^2$$



Factoring the Sum or Difference of Two Cubes

1. Factoring the Sum of Two Cubes

$$A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$$

2. Factoring the Difference of Two Cubes

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$