
BOARD NOTES

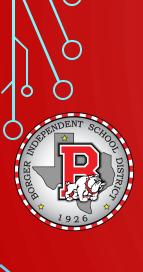
13 NOVEMBER 2019

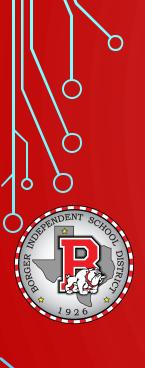
We will be able to determine if a system of equations is consistent or inconsistent.

WHAT WE NEED:

- TI-84
- Definition:
 - Consistent
 - Inconsistent
- Solve for a variable

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE


System of Equations

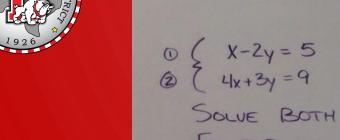

All equations in the form Ax + By = C are straight lines when graphed. Two such equations are called a **system** of linear equations or a linear system. A solution to a system of linear equations in two variables is an ordered pair that satisfies both equations in the system.

A linear system that has at least one solution is called a **consistent system**.

A linear system with no solution is called an inconsistent system.

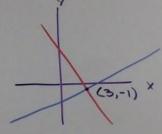
- Solve either of the equations for one variable in terms of the other. (If one of the equations is already in this form, you can skip this step.)
- 2. Substitute the expression found in step 1 into the other equation. This will result in an equation in one variable.
- 3. Solve the equation containing one variable.
- 4. Back-substitute the value found in step 3 into one of the original equations. Simplify and find the value of the remaining variable.
- Check the proposed solution in both of the system's given equations.

- 1. If necessary, rewrite both equations in the form Ax + By = C.
- 2. If necessary, multiply either equation or both equations by appropriate nonzero numbers so that the sum of the *x*-coefficients or the sum of the *y*-coefficients is 0.
- Add the equations in step 2. The sum is an equation in one variable.
- 4. Solve the equation in one variable.
- Back-substitute the value obtained in step 4 into either of the given equations and solve for the other variable.
- 6. Check the solution in both of the original equations.



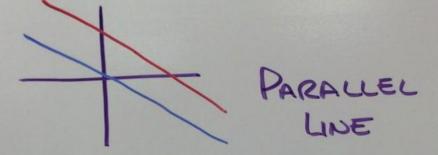
$$(-2,3)$$
 $\begin{cases} x-6y=20\\ 3x+2y=0 \end{cases}$

LHS RHS $(-2)-(-6(3)=-20 \neq 20$ 3(-2)+2(3)=0(-2,3) IS NOT A SOUN LHS RHS $11(4)-2(-9)=44+18=62 \checkmark 62$ $3(4)+(-9)=12-9=3 \checkmark 3$


: (4,-9) IS A SOLD.

0
$$x-2y=5$$
 @ $4x+3y=9$
 $-2y=5-x$ $3y=9$
 $y=\frac{5-x}{-2}$ $y=\frac{5-x}{2}$

$$(3,-1)$$


②
$$4x+3y=9$$

 $3y=9-4x$
 $y=\frac{9-4x}{3}$

$$(-3.077, -\frac{37}{13})$$

$$-22$$
 9(-3.077)-2(- $\frac{37}{13}$)= -22.

NO SOLUTION

SAME LINE

00 SOLUTIONS