

2A. 3 (A) formulate systems of equations, including systems consisting of three linear equations in three variables and systems consisting of two equations, the first linear and the second quadratic;

We will be able to determine if a system of equations is consistent or inconsistent.

> I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE
> - System of Equations

- Definition:
- Consistent
- Inconsistent
- Solve for a variable

1. Solve either of the equations for one variable in terms of the other. (If one of the equations is already in this form, you can skip this step.)
2. Substitute the expression found in step 1 into the other equation. This will result in an equation in one variable.
3. Solve the equation containing one variable.
4. Back-substitute the value found in step 3 into one of the original equations. Simplify and find the value of the remaining variable.
5. Check the proposed solution in both of the system's given equations.
6. If necessary, rewrite both equations in the form $A x+B y=C$.
7. If necessary, multiply either equation or both equations by appropriate nonzero numbers so that the sum of the x-coefficients or the sum of the y-coefficients is 0 .
8. Add the equations in step 2 . The sum is an equation in one variable.
9. Solve the equation in one variable.
10. Back-substitute the value obtained in step 4 into either of the given equations and solve for the other variable.
11. Check the solution in both of the original equations.

$$
\begin{gathered}
\text { Ex 1) }\left\{\begin{array}{l}
-x+y=4 \\
y=x^{2}+4 x-6
\end{array}\right. \\
(2,6) \\
(-5,-1)
\end{gathered}
$$

$$
\text { Ex } 2 \text { 2) }\left\{\begin{array}{l}
x^{2}=2 y+10 \\
4 x-y=9
\end{array}\right.
$$

$$
\begin{aligned}
& x^{2}-8 x+8=0 \\
& x= \\
& \begin{aligned}
& a=1 \quad b=\frac{-8}{b^{2}-4 a c} \\
& x=\frac{8 \pm \sqrt{64-32}}{2} \\
&=\frac{8 \pm \sqrt{32}}{2} \\
&(6.83,18.32) \\
&(1.17,-4.32)
\end{aligned} \\
& \\
&
\end{aligned}
$$

$$
\text { Ex3) }\left\{\begin{array}{llll}
4 x^{2}+y^{2}=13 & (1,3) & y= \pm \sqrt{13-4 x^{2}} \\
x^{2}+y^{2}=10 & (2) & (1,-3) & y= \pm \sqrt{10-x^{2}} \\
\text { Eun } y & (-1,3) & \\
\text { (1)+(-1)(2)} & x= \pm 1 \rightarrow \text { (2) } & (-1,-3) \\
4 x^{2}+y^{2}=13 & y^{2}=9 & & \\
\frac{-x^{2}-y^{2}=-10}{3 x^{2}=3} & y= \pm 3 & & \\
x^{2}=1 & & &
\end{array}\right.
$$

