

2A. 3 (B) solve systems of three linear equations in three variables by using Gaussian elimination, technology with matrices, and substitution;

We will be able to calculate the solution for a system of equations using inverse matrices.

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- TI-84
- Definition:
- Consistent
- Inconsistent
- Solve for a variable

$$
\begin{aligned}
& \text { A } \quad X \\
& {\left[\begin{array}{rr}
4 & 3 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right]} \\
& (-1,0) \\
& \left\{\begin{array}{l}
4 x+3 y=-4 \\
3 x-y=-3
\end{array} \quad x=\frac{\left|\begin{array}{cc}
-4 & 3 \\
-3 & -1
\end{array}\right|}{\left|\begin{array}{cc}
4 & 3 \\
3 & -1
\end{array}\right|}=\frac{13}{-13}=-1\right. \\
& y=\frac{\left.\frac{4}{4}-4\right]}{-13}=\frac{0}{-13}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5}{2}\left(\frac{2}{5} x\right)=(6) \frac{5}{2} \\
& x=15 \\
& A^{-1} A X=A^{-1} B \\
& X=A^{-1} B \\
& X=A^{-1} B \\
& =\left[\begin{array}{cc}
\frac{1}{13} & \frac{3}{13} \\
\frac{3}{13} & -\frac{4}{13}
\end{array}\right]\left[\begin{array}{c}
-4 \\
-3
\end{array}\right] \\
& =\left[\begin{array}{l}
-\frac{4}{13}-\frac{9}{13} \\
-\frac{12}{13}+\frac{2}{13}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

