

2A. 7 (F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two;

We will be able to simplify complex fractions.

WHAT WE NEED:

- TI-84

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

$$
\begin{aligned}
& \quad \frac{24}{24} \frac{\left(\frac{3}{4}-\frac{1}{88}\right)}{\left(2+\frac{1}{12}\right)}=\frac{6 \cdot 3-3 \cdot 1}{48+2 \cdot 1}=\frac{18-3}{48+2}=\frac{15}{50}=\frac{3}{10} \\
& 4812 \\
& 4 \times 4 \cdot 2 \times 3 \cdot 3 \frac{\frac{3}{4}-\frac{1}{8}}{2+\frac{1}{12}}=\frac{\frac{6}{8}-\frac{1}{8}}{\frac{24}{12}+\frac{1}{12}}=\frac{\frac{5}{8}}{\frac{25}{12}}=\frac{8}{28} \cdot \frac{122^{3}}{255}=\frac{3}{10} \\
& =24
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{1}{x+2}}{6+\frac{4}{x}} \text { LCD } \\
& \begin{aligned}
\frac{3}{(x)(x+2)} \\
{[x(x+2)]\left(6+\frac{x^{2}+2 x}{x}\right) }
\end{aligned} \text { OR } x(x+2) \\
&=\frac{x}{6\left(x^{2}+2 x\right)+x(x+2) \cdot \frac{4}{*}} \\
&=\frac{x}{6\left(x^{2}+2 x\right)+4(x+2)}=\frac{x}{6 x^{2}+16 x+8}
\end{aligned}
$$

$$
\begin{aligned}
& 12 x\left(\frac{\left(\frac{1}{x}+\frac{3}{2 x}\right)}{\left(\frac{1}{3 x}+\frac{3}{4 x}\right)} \quad \text { LCD: } 2 x \cdot 2 \cdot 3 \cdot 2\right. \\
& \begin{array}{ll}
12 \cdot 1+6 \cdot 3 \\
4 \cdot 1+3 \cdot 3 & =\frac{30}{13}
\end{array}=12 x
\end{aligned}
$$

$$
\begin{array}{r}
f(x)=4 x-7 \\
y=4 x-7 \\
x=4 y-7 \\
x+7=4 y \\
y=\frac{x+7}{4} \\
g(x)=\frac{x+7}{4}
\end{array}
$$

$$
\text { (1) } \begin{aligned}
f(g(x)) & =4\left(\frac{x+7}{4}\right)-7 \\
& =(x+7)-7 \\
& =x \\
\text { (2) } g(f(x)) & =\frac{(4 x-7)+7}{4} \\
& =\frac{4 x}{4} \quad \therefore \text { By (1) } \quad \text { (2) } \\
& =x \quad g(x)=f^{-1}(x)
\end{aligned}
$$

