
2) -5
4) 5

$$
\frac{x-24}{2 x^{2}-9 x-18}=\frac{x}{x-6}-\frac{2 x}{2 x+3}
$$

6) -1
7) -1

$$
2 x^{2}-9 x-18=(x-6)(2 x+3)
$$

10) $-\frac{12}{7}$

$$
\begin{aligned}
x-24 & =x(2 x+3)-2 x(x-6) \\
x-24 & =2 x^{2}+3 x-2 x^{2}+12 x \\
14 x & =-24 \\
x & =-\frac{12}{7}
\end{aligned}
$$

$$
\begin{array}{cc}
\operatorname{LCD}\left(\frac{8}{2 x+4}-\frac{3 x+1}{x^{2}+2 x}=\frac{2}{x+2}\right) \rightarrow 8 x-6 x-2=4 x \\
2(x+2) & -2 x=2 \\
x(x+2) & x=-1 \\
x+2
\end{array}
$$

LCD $2 x(x+2)$

2A. 7 (F) determine the sum, difference, product, and quotient of rational expressions with integral exponents of degree one and of degree two;

We will be able to graph rational functions.

WHAT WE NEED:

- TI-84

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

NORMA PRESS	LOAT OR \triangle Tb	TTO REAL	RadIfiN	MP	\square
X	Y 1				
-3	$\frac{1}{4}$				
-2	0				
-1	$\frac{-1}{2}$				
0	-2				
1	ERROR				
2					
3	$\frac{5}{2}$				

$x=-3$

$$
f(x)=\frac{x+2}{x-1}
$$

$$
V A: x=1
$$

$$
H A: y=1
$$

NORMAL FLOAT AUTO REAL RADIAN MP INEqUALITY MENU: [2nd] [CfLC]

NORMAL FLOAT fUTO REfL RADIAN MP PRESS + FOR \triangle Tbl

$X=-5$

$$
\begin{aligned}
& f(x)=\frac{3}{x+2} \\
& V A: x=-2
\end{aligned}
$$

$$
H A: y=0
$$

X	Y_{1}				
-2	$\frac{-4}{3}$				
-1	$\frac{-1}{2}$				
0	θ				
1	ERRROR				
2	4				
3	$\frac{9}{2}$				

$X=-2$
$f(x)=\frac{x^{2}}{x-1}$
$V A: x=1$
HA: None
SA: $y=x+1$

$$
\begin{aligned}
& y=\frac{3}{\left(\frac{3}{x+2}\right.} \\
& V A: \quad x+2=0 \\
& H A: \quad y=-2 \\
& \frac{3 x^{\circ}}{x}
\end{aligned}
$$

$$
f(x)=\frac{x^{2}}{x-1}
$$

$$
x-1=0
$$

$$
V A: x=1
$$

$$
\begin{array}{lr}
H A: \frac{x^{2}}{x} & x-1 \sqrt{x+1} \\
y=x+1 & \frac{-\left(x^{2}-x\right)}{x}
\end{array}
$$

