

2A. 6 (L) formulate and solve equations involving inverse variation.

We will be able to formulate and solve variation problems.

WHAT WE NEED:

- TI-84

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

1) Setup problem w/ known values to solve for K (Variation constant)
2) Solve for unknown
value

Direct

$$
y=k x
$$

1) $25=k 15$

$$
k=\frac{25}{15}
$$

$$
=\frac{5}{3}
$$

2)

$$
\begin{gathered}
40=\frac{5}{3} x \\
40 \cdot \frac{3}{5}=x \\
x=24
\end{gathered}
$$

Inversely
$y=\frac{k}{x}$

1) $22=\frac{k}{6}$
$k=132$
2)

$$
\begin{aligned}
15 & =\frac{132}{x} \\
15 x & =132 \\
x & =\frac{132}{15} \\
& =\frac{44}{5}
\end{aligned}
$$

$$
y=k x^{\text {Lono }}
$$

STEETCH
1)

$$
\begin{aligned}
3.6 & =k 15 \\
k & =.24
\end{aligned}
$$

2)

$$
\begin{aligned}
& 6=.24 x \\
& x=\frac{6}{.24} \\
& =25 \mathrm{~kg}
\end{aligned}
$$

$$
r=\frac{k s t}{u}
$$

$$
x=k y z^{2}
$$

1)

$$
\begin{aligned}
18 & =\frac{k \cdot 2 \cdot 3}{4} \\
k & =12
\end{aligned}
$$

2)

$$
\begin{aligned}
& 6=\frac{12 \cdot 5 \cdot 2}{4} \\
& 5=1
\end{aligned}
$$

1) $100=k \cdot 2 \cdot 5^{2}$

$$
k=2
$$

2)

$$
\begin{aligned}
x & =2 \cdot 4 \cdot 3^{2} \\
& =8 \cdot 9 \\
& =72
\end{aligned}
$$

days until
Valentines:
P-... Day

$$
y=\frac{k}{x}
$$

$$
T=k V P
$$

(A) Resistance
1)

$$
\begin{aligned}
& 5=\frac{k}{24} \\
& k=120
\end{aligned}
$$

2)

$$
\begin{aligned}
& 8=\frac{120}{x} \\
& x=\frac{120}{8} \\
& x=150 \mathrm{mms}
\end{aligned}
$$

1) $294=k \cdot 8000 \cdot 0.75$

$$
k=.049
$$

2) $T=.049 \cdot 7000 \cdot 0.87$

$$
=298.41^{\circ} \mathrm{K}
$$

