

2A. 7 (G) rewrite radical expressions that contain variables to equivalent forms; 2A. $7(\mathrm{H})$ solve equations involving rational exponents;

We will be able to rewrite radical expressions to equivalent forms.

WHAT WE NEED:

- TI-84

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

Laws of Exponents Extended to Rational Exponents

$$
a^{m} \cdot a^{n}=a^{m+n} \quad a^{\frac{p}{r}} \cdot a^{\frac{q}{s}}=a^{\frac{p}{r}+\frac{q}{s}}
$$

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

$$
\frac{a^{\frac{p}{r}}}{a^{\frac{q}{s}}}=a^{\frac{p}{r}-\frac{q}{s}}
$$

$$
\left(a^{m}\right)^{n}=a^{m \cdot n}
$$

$$
\left(a^{\frac{p}{r}}\right)^{\frac{q}{s}}=a^{\frac{p}{r} \cdot \frac{q}{s}}
$$

$$
\begin{array}{rlrl}
4^{\frac{1}{5}} & =\sqrt[5]{4} & 5^{\frac{3}{4}}=\sqrt[4]{5^{3}} & a^{-m}=\frac{1}{a^{m}} \\
16^{\frac{5}{3}} & =(\sqrt[3]{16})^{5} & 4^{\frac{3}{2}}=(\sqrt{4})^{3}=2^{3}=8 & a^{-\frac{p}{r}}=\frac{1}{a^{\frac{p}{7}}} \\
& =\left(\sqrt[3]{2^{3} \cdot 2}\right)^{5} & 9^{-\frac{1}{2}}=\frac{1}{\sqrt{9}}=\frac{1}{3} & \left(5^{4} \cdot 3^{4}\right)^{\frac{1}{4}}=15 \\
& =\left(2^{2}\right)^{5} & 8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}=4 & \left(5^{4} \cdot 3^{4}\right)^{\frac{1}{4}}=5^{4 \cdot \frac{1}{4}} \cdot 3^{4 \cdot \frac{1}{4}} \\
& =2^{5}(\sqrt[{(\sqrt[3]{2})^{5}}]{ } & =32(\sqrt[3]{2})^{5} & \\
& \text { OR } & =5^{1} \cdot 3^{1} \\
& \sqrt[3]{8^{2}}=\sqrt[3]{64}=\sqrt[3]{4 \cdot 4 \cdot 4}=4 & & =15
\end{array}
$$

$$
\begin{aligned}
& 14 \\
& \text { days until } \\
& \text { Valentines } \\
& 5^{\frac{1}{3}} \cdot 5^{\frac{1}{4}}=5
\end{aligned}
$$

$$
32^{-\frac{3}{5}}=\frac{1}{8}
$$

$$
32^{-\frac{3}{5}}=\frac{1}{32^{\frac{2}{3}}}=\frac{1}{(\sqrt[432]{3})^{3}}=\frac{1}{2^{3}}=\frac{1}{8}
$$

$$
z^{5}=32
$$

$$
\begin{array}{rlrll}
5^{\frac{1}{3}} \cdot 5^{\frac{1}{4}} & =5^{\frac{1}{3}+\frac{1}{4}} & \begin{array}{lll}
\frac{1}{4^{-\frac{1}{2}}}=4^{\frac{3}{2}} & \left(2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}}\right)^{15} & 3^{\frac{1}{3}} \\
& =\left(2^{\frac{1}{3}+\frac{1}{3}}\right)^{15} & 3^{\frac{1}{3}-\frac{1}{6}} \\
& =5^{\frac{4}{12}+\frac{3}{12}} & \text { SeE Work }
\end{array}=\left(2^{\frac{8}{15}}\right)^{15} & =3^{\frac{2}{6}-\frac{1}{6}} \\
& \text { UP FRQuT } & =2^{\frac{8}{15} \cdot 15} & =3^{\frac{1}{6}} \\
& =5^{\frac{7}{12}} & & & =2^{8}=256
\end{array} \frac{2}{2^{\frac{1}{3}}}=2^{1-\frac{1}{3}}=2^{\frac{2}{3}}
$$

