

2A. 7 (G) rewrite radical expressions that contain variables to equivalent forms; 2A. $7(\mathrm{H})$ solve equations involving rational exponents;

We will be able to solve equations involving rational exponents.

WHAT WE NEED:

- TI-84

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

$$
-2(3 x+4)^{\frac{1}{2}}-3=21
$$

1. Isolate the term containing the $1 .-2(3 x+4)^{\frac{1}{2}}=24 \rightarrow(3 x+4)^{\frac{1}{2}}=-12$ rational exponent.
2. Raise both sides to the reciprocal power of the exponent.
3. Solve for $x$.
4. Check solution.
5. Write the solution.


$$
\begin{gathered}
\left(2^{\frac{1}{2}}\right)^{\frac{2}{3}}=2^{\frac{1}{2} \cdot \frac{2}{3}}=2^{\frac{2}{6}}=2^{\frac{1}{3}}=\sqrt[3]{2} \\
\left(-9^{\frac{1}{7}}\right)\left(-9^{\frac{4}{7}}\right)=-9^{\frac{1}{7}+\frac{4}{7}} \\
=-9^{\frac{5}{7}} \\
\frac{12^{\frac{10}{8}}}{12^{-\frac{3}{8}}}=12^{\frac{10}{8}-\left(-\frac{3}{8}\right)}=12^{\frac{13}{8}}
\end{gathered}
$$

$$
a^{-m}=\frac{1}{a^{m}}
$$

$$
\frac{1}{a^{-m}}=a^{m}
$$



$$
\begin{array}{llll}
a^{m} \cdot a^{n}=a^{m+n} & \begin{array}{c}
m \rightarrow \frac{p}{5} \\
n \rightarrow \frac{a}{5}
\end{array} & x^{\frac{4}{3}}=16 & \text { LHS }=8^{\frac{4}{3}}=(\sqrt[3]{8})^{4}=16=\text { RHS } \\
\frac{a^{m}}{a^{n}}=a^{m-n} & \left(x^{\frac{4}{3}}\right)^{\frac{3}{4}}=16^{\frac{3}{4}} & \\
\left(a^{m}\right)^{n}=a^{m n} & x & =(\sqrt[4]{16})^{3} & \left(3^{2}\right)^{3} 2^{2} \\
a^{0}=1 & & =2^{3} & 3^{5} \\
(a b)^{m}=a^{m} b^{m} & & =8 &
\end{array}
$$

$$
\begin{gathered}
(3 x)^{\frac{1}{2}}+6=0 \\
(3 x)^{\frac{1}{2}}=-6 \\
\left((3 x)^{\frac{1}{2}}\right)^{2}=(-6)^{2} \\
3 x^{\frac{1}{2} \cdot 2}=36 \\
x=12 \\
\text { No Sow }
\end{gathered}
$$

; days until

- Valentiries

M-LD D

$$
\begin{array}{rlrl}
(x-1)^{\frac{3}{2}} & =8 & & \\
\left((x-1)^{\frac{3}{2}}\right)^{\frac{2}{3}} & =8^{\frac{2}{3}} & \text { LHS } & =(5-1)^{\frac{3}{2}} \\
x-1 & =\sqrt[3]{8^{2}} & & =4^{\frac{3}{2}} \\
x-1 & =(\sqrt{4})^{3} \\
x & =1+\sqrt[3]{6} & & =8 \\
x & =1+2^{2} 64 & & =\text { RHS } \\
& =1+4 & & \\
& =5 & &
\end{array}
$$



$$
\begin{aligned}
2 x & =4 \\
x & =2 \\
\text { LHS } & =-3(2 \cdot 2+4)^{\frac{2}{3}}+1 \\
& =-3(8)^{\frac{2}{3}}+1 \\
& =-3(4)+1 \\
& =-11 \\
& =\text { RHS }
\end{aligned}
$$

