

30 JANUARY 2020

 \square

 \mathbf{a}

Q

 $\cap \dot{C}$

B

 \mathbb{O}

Q

2A.7 (G) rewrite radical expressions that contain variables to equivalent forms; 2A.7 (H) solve equations involving rational exponents;

We will be able to solve equations involving rational exponents.

WHAT WE NEED:

• TI-84

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

• Equation

- $-2(3x+4)^{\frac{1}{2}} 3 = 21$
- rational exponent.
- Raise both sides to the reciprocal power of the exponent.
- 3. Solve for x.
- 4. Check solution.
- 5. Write the solution.

1. Isolate the term containing the 1. $-2(3x+4)^{\frac{1}{2}} = 24 \rightarrow (3x+4)^{\frac{1}{2}} = -12$ **2.** $\left((3x+4)^{\frac{1}{2}}\right)^2 = (-12)^2$

3.
$$3x + 4 = 144 \rightarrow 3x = 140 \rightarrow x = \frac{140}{3}$$

4. LHS =
$$-2\left(3 \cdot \frac{140}{3} + 4\right)^{\frac{1}{2}} - 3 = -27 \neq 21 = \text{RHS}$$

5. No solution.

 $(2^{\frac{1}{2}})^{\frac{2}{3}} = 2^{\frac{1}{2}\cdot\frac{2}{3}} = 2^{\frac{2}{3}} = 2^{\frac{1}{3}} = \frac{3}{2}$ $a^{-m} = \overline{a^{m}}$ $(-q^{\frac{1}{7}})(-q^{\frac{1}{7}}) = -q^{\frac{1}{7}+\frac{4}{7}}$ -9517 $\overline{Q_{-w}} = Q_{w}$ $\frac{12^{\frac{10}{8}}}{12^{-\frac{3}{8}}} = 12^{\frac{10}{8} - \left(\frac{-3}{8}\right)} = 12^{\frac{13}{8}}$

language in written or or $a^{m} \cdot a^{n} = a^{m+n} \qquad m \Rightarrow \frac{p}{r} \qquad \chi^{\frac{4}{3}} = 16$ $a^{m} = a^{m-n} \qquad (\chi^{\frac{4}{3}})^{\frac{3}{4}} = 16^{\frac{3}{4}}$ LHS= 8 = (3/8)4= 16 = RHS $\chi = (4\sqrt{16})^3$ $(a^m)^n = a^{mn}$ $(3^2)^3$ z^2 3^5 $= 2^3$ = 8 $\alpha^{\circ} = 1$ $(ab)^m = a^m b^m$

and argument using precise mathematical

 $(3x)^{\frac{1}{2}} + 6 = 0$

 $(3x)^{\frac{1}{2}} = -6$

X= 12

No Solu

days until : Valentires P---- Day __ V $(X-1)^{\frac{3}{2}} = 8$ LHS= (5-1)32 LHS= (3.12)=+6 $((X-1)^{2})^{2} = 8^{1}$ $= 36^{\frac{1}{2}} + 6$ $= -\sqrt{3}6 + 6$ = (e + 6 $X - 1 = \sqrt[3]{8^2}$ $((3x)^{\frac{1}{2}})^{2} = (-6)^{2}$ $3x^{\frac{1}{2} \cdot 2} = 36$

88

= 12

*≠*0

= 432 = (-14)3 $X-1 = (\frac{3}{8})^2$ = 8 $X = 1 + \frac{3}{64}$ $X = 1 + 2^{2}$ = 1 + 4= RHS = 5

5-1)32 432 -[4]3 8 RHS

-3(2x+4) +1=-11 $-3(2x+4)^{\frac{2}{3}} = -12$ LHS = $-3(2\cdot2+4)^{\frac{2}{3}} + 1$ $((2x+4)^{2})^{2}=(4)^{2}$ 2x+4=8

Zx = 4 X = Z $=-3(8)^{\frac{2}{3}}+1$ =-3(4)+1 =-11 = RHS

