

2A. 4 (F) solve quadratic and square root equations; 2A. 4 (G) identify extraneous solutions of square root equations;
2A. 7 (G) rewrite radical expressions that contain variables to equivalent forms;
2A. $7(\mathrm{H})$ solve equations involving rational exponents;

We will be able to square expressions. (Review)

WHAT WE NEED:

- TI-84

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

$$
\begin{aligned}
& (x-4)^{2} \\
= & (x-4)(x-4) \\
= & x^{2}-8 x+16
\end{aligned}
$$

$$
\begin{aligned}
& *(a-b)^{2}=a^{2}-2 a b+b^{2} \\
& *(a+b)^{2}=a^{2}+2 a b+b^{2} \\
& *(a-b)(a+b)=a^{2}-b^{2}
\end{aligned}
$$

$$
(\sqrt{5})^{2}=\left(5^{\frac{1}{2}}\right)^{2}=5
$$

$$
\begin{aligned}
(7 \sqrt{x})^{2} \quad(a b)^{m} & =a^{m} b^{m} \\
=7^{2}(\sqrt{x})^{2} & (3 \sqrt{x-6})^{2}=9 x-54 \\
=49 x & =3^{2}(\sqrt{x-6})^{2} \\
& =9(x-6)
\end{aligned}
$$

$$
\begin{aligned}
& (1+\sqrt{x+3})^{2}=x+2 \sqrt{x+3}+4 \\
& =1^{2}+2(1)(\sqrt{x+3})+(\sqrt{x+3})^{2} \\
& =1+2 \sqrt{x+3}+x+3 \\
& =x+2 \sqrt{x+3}+4 \quad 2+3 \sqrt{3 x-5} \\
& (1+\sqrt{x+3})(1+\sqrt{x+3})=27 x+12 \sqrt{3 x-5}-41 \\
& \text { F:1 }=1=1 \\
& 0: \sqrt{x+3}=\sqrt{x+3} \\
& 1: 1 \cdot \sqrt{x+3}=-\sqrt{x+3} \\
& L: \sqrt{x+3} \cdot \sqrt{x+3}=x+3
\end{aligned}
$$

$$
\begin{aligned}
(2+3 \sqrt{3 x-5})^{2} & =(2+3 \sqrt{3 x-5})(2+3 \sqrt{3 x-5}) \\
& =2 \cdot 2+2 \cdot 3 \sqrt{3 x-5}+2 \cdot 3 \sqrt{3 x-5}+(3 \sqrt{3 x-5})(3 \sqrt{3 x-5}) \\
& =4+6 \sqrt{3 x-5}+6 \sqrt{3 x-5}+(3 \cdot 3)(\sqrt{3 x-5} \cdot \sqrt{3 x-5}) \\
& =4+12 \sqrt{3 x-5}+9(3 x-5) \\
& =4+12 \sqrt{3 x-5}+27 x-45 \\
& =27 x+12 \sqrt{3 x-5}-41
\end{aligned}
$$

