

2A. 4 (F) solve quadratic and square root equations; 2A. 4 (G) identify extraneous solutions of square root equations;
2A. 7 (G) rewrite radical expressions that contain variables to equivalent forms;
2A. $7(\mathrm{H})$ solve equations involving rational exponents;

We will be able to solve equations involving rational exponents identifying extraneous solutions.

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- TI-84
- Equation

Solving Radical Equations (More Than One Radical)

1. Isolate one radical
2. Raise both sides by the reciprocal power
3. Repeat steps $1-2$ until there are no radicals
4. Solve for x
5. Check possible solutions
6. Circle or box in solution

$$
\begin{aligned}
(\sqrt{3 x+1})^{2} & =(\sqrt{x+15})^{2} \\
3 x+1 & =x+15 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

$$
\text { LHS }=\sqrt{7 \cdot 3+1}
$$

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

$$
\begin{array}{ll}
\sqrt{3 x+4}=\sqrt{x+1}+1 & (x+1)^{2}=(\sqrt{x+1})^{2} \\
(\sqrt{3 x+4})^{2}=(\sqrt{x+1}+1)^{2} & x^{2}+2 x+1=x+1 \\
3 x+4=x+1+1+2 \sqrt{x+1} & \\
x^{2}+x=0 \\
2 x+2=2 \sqrt{x+1} & \\
x+1=\sqrt{x+1} & \\
& x=0 \\
& \\
& \\
& x=-1)
\end{array}
$$

Valentiris: \varnothing -

$$
\begin{aligned}
\text { LHS } & =\sqrt{3 \cdot 0+4} \\
& =\sqrt{4} \\
& =2
\end{aligned}
$$

RHS $=\sqrt{0+1}+1$

$$
\text { RHS }=\sqrt{-1+1}+1
$$

$$
=\sqrt{1}+1
$$

$$
=0+1
$$

$$
=2
$$

$$
\begin{aligned}
& (\sqrt{3-\sqrt{x+1}})^{2}=(\sqrt{3 x-5})^{2} \quad 9\left(x^{2}-\frac{13}{3} x+\frac{16}{9}=0\right) \\
& \left(\left(3(x+1)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{2}=3 x-5 \\
& 9 x^{2}-39 x+16=0 \\
& a=9 \\
& \begin{array}{l}
b=-39 \\
c=16
\end{array} \\
& 3 \sqrt{x+1}=3 x-5 \\
& (\sqrt{x+1})^{2}=\left(x-\frac{5}{3}\right)^{2} \\
& x+1=x^{2}-\frac{10}{3} x+\frac{25}{9} \\
& \frac{3 x}{3} \quad \frac{9}{9} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-39) \pm \sqrt{(-39)^{2}-4(9)(16)}}{2(9)} \\
& =\frac{39 \pm \sqrt{1521-576}}{18} \\
& =\frac{39 \pm \sqrt{1845}}{18} \\
& =\frac{39+\sqrt{9 \cdot 105}}{18}
\end{aligned}
$$

