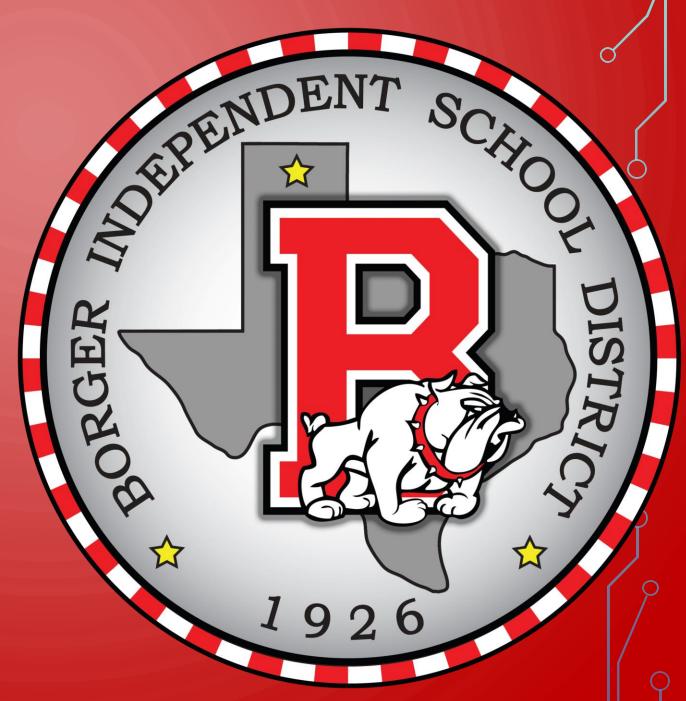
# BOARD NOTES

10 FEBRUARY 2020

 $\square$ 

 $\mathbf{a}$ 


Q

ററ്

B

 $\mathbb{O}$ 

Q



2A.5 (D) solve exponential equations of the form  $y = ab^x$  where a is a nonzero real number and b is greater than zero and not equal to one and single logarithmic equations having real solutions; 2A.5 (E) determine the reasonableness of a solution to a logarithmic equation.

## We will be able to solve exponential equations.



## WHAT WE NEED:

• TI-84



• Laws of Exponents

## I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

• Equation





 $(-4)(-4)^3 = -4^{1+3} = (-4)^4$  $((-3)^2)^3 = (-3)^{2\cdot3} = (-3)^6$  $(3^{2}x^{2}y)^{2} = 3^{2 \cdot 2} x^{2 \cdot 2} y^{1 \cdot 2} = 3^{4} x^{4} y^{2}$  $m^{7} \cdot \frac{1}{m^{4}} = m^{7 - 4} = m^{3}$ 

American present for estimate and market and





 $\frac{8^9}{8^5 \cdot 8^3} = 8^{9-(5+3)} = 8$ 

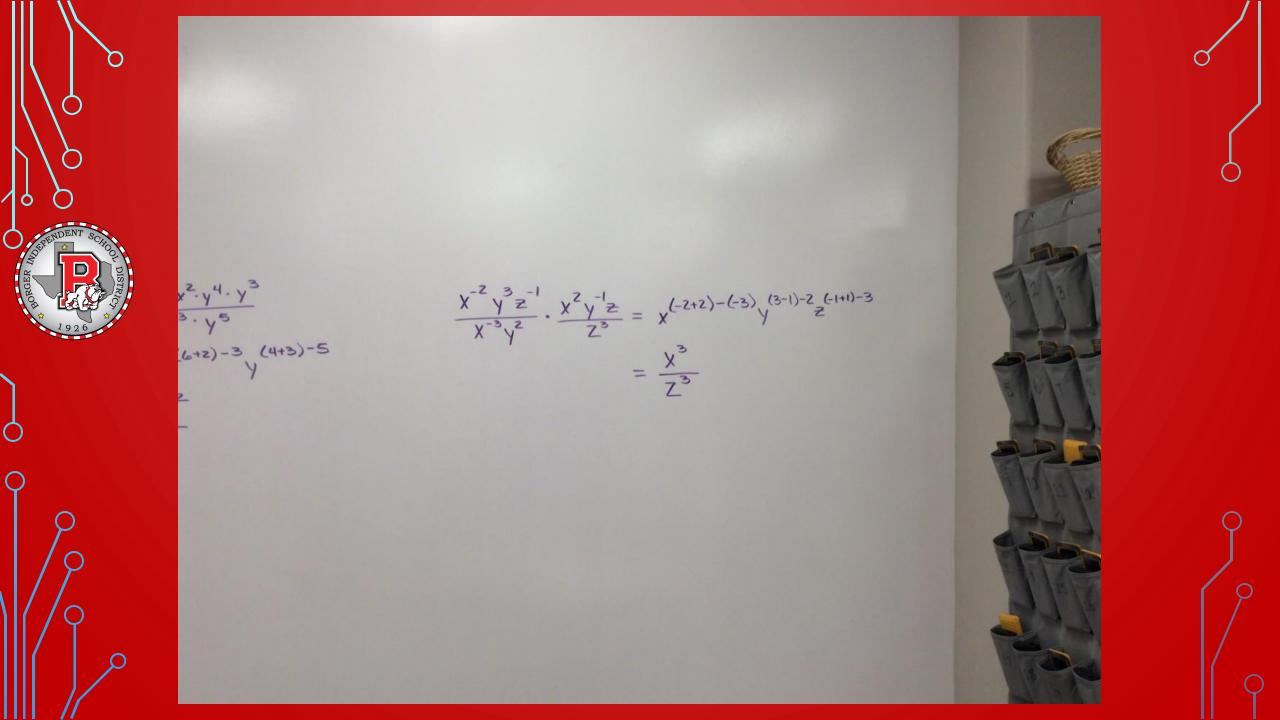
longuage is ritten or or

4<sup>y</sup>. 4<sup>6</sup> = 4<sup>y+6</sup>

 $3^{X}_{3}^{Z} = 3^{X}_{3} \rightarrow 3^{X+Z}_{3} = 3^{X+Z}_{3}$ X+Z = 8X = 6

 $|F = a^m = a^n THEN m = n$ -4 3 -4+3 -1  $=\frac{1}{5}$ 5  $\cdot$  5 = 5 = 5 = 5  $5^{-4} \cdot 5^3 = \frac{5^3}{5^4} = 5^{-4} = 5^{-1} = \frac{1}{5}$  $(2^{-3})^2 = 2^{-3 \cdot 2} = 2^{-6} = \frac{1}{2^6}$  $\frac{8^{3} \cdot 8^{5}}{8^{9}} = 8^{(3+5)-9} = 8^{-1} = \frac{1}{8}$  $\left(\frac{5}{6}\right)^{-3} = \frac{5^{-3}}{5^{-3}} = \frac{1}{5^{-3}} = \frac{1}{5^{-3}} \cdot \frac{1}{5^{-3}} = \frac{1}{5^{-3$ 






days until 1 Valentiris Day D 1

Bx y 5.3. x4. x3. y3. y5 8.6.x5.y4

 $= \frac{15}{48} x^{(4+3)-5} (3+5)-4 y^{(3+5)-4}$  $= \frac{5x^2y^4}{16}$ 

 $\frac{2x^{k}y^{t}}{4x^{2}y^{2}} \cdot \frac{4x^{2}y^{2}}{4x^{2}y^{2}} = \frac{2 \cdot 4 \cdot x^{6} \cdot x^{2} \cdot y^{4} \cdot y^{3}}{6 \cdot 12 \cdot x^{3} \cdot y^{5}}$  $= \frac{8}{72} x^{(6+2)-3} y^{(4+3)-5}$ X<sup>5</sup>y<sup>2</sup>  $=\frac{x^{5}x^{2}}{9}$ 

