

2A. 5 (D) solve exponential equations of the form $y=a b^{x}$ where a is a nonzero real number and b is greater than zero and not equal to one and single logarithmic equations having real solutions; 2A. 5 (E) determine the reasonableness of a solution to a logarithmic equation.

We will be able to solve exponential equations.

WHAT WE NEED:

- TI-84
- Laws of Exponents

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

$$
\begin{aligned}
& (-4)(-4)^{3}=-4^{1+3}=(-4)^{4} \\
& \left((-3)^{2}\right)^{3}=(-3)^{2 \cdot 3}=(-3)^{6} \\
& \left(3^{2} x^{2} y\right)^{2}=3^{2 \cdot 2} x^{2 \cdot 2} y^{1 \cdot 2}=3^{4} x^{4} y^{2} \\
& m^{7} \cdot \frac{1}{m^{4}}=m^{7-4}=m^{3}
\end{aligned}
$$

$$
\begin{gathered}
\frac{8^{9}}{8^{5} \cdot 8^{3}}=8^{9-(5+3)}=8 \\
\left(2 r^{3} s^{5}\right)^{0}=2^{100} r^{3 \cdot 0} 5^{5 \cdot 0}=2^{0} r^{0} s^{0}=1 \\
4^{y} \cdot 4^{6}=4^{y+6} \\
3^{x} 3^{2}=3^{8} \rightarrow 3^{x+2}=3^{8} \\
x+2=8 \\
x=6
\end{gathered}
$$

$$
\text { IF } a^{m}=a^{n} \text { THau } m=n
$$

$$
\begin{aligned}
& 5^{-4} \cdot 5^{3}=5^{-4+3}=5^{-1}=\frac{1}{5} \\
& 5^{-4} \cdot 5^{3}=\frac{5^{3}}{5^{4}}=5^{3-4}=5^{-1}=\frac{1}{5}
\end{aligned}
$$

$$
\left(2^{-3}\right)^{2}=2^{-3 \cdot 2}=2^{-6}=\frac{1}{2^{6}}
$$

$$
\frac{8^{3} \cdot 8^{5}}{8^{9}}=8^{(3+5)-9}=8^{-1}=\frac{1}{8}
$$

$$
\left(\frac{5}{6}\right)^{-3}=\frac{5^{-3}}{6^{-3}}=\frac{\frac{1}{5^{2}}}{\frac{1}{6^{3}}}=\frac{1}{5^{3}} \cdot \frac{6^{3}}{1}=\frac{6^{3}}{5^{3}}
$$

$$
\begin{aligned}
\frac{5 x^{4} y^{3}}{8 x^{8 x}} \cdot \frac{3 x^{2} y^{\frac{1}{8}}}{\frac{66 y^{4}}{2}} & =\frac{5 \cdot 3 \cdot x^{4} \cdot x^{3} \cdot y^{3} \cdot y^{5}}{8 \cdot 6 \cdot x^{5} \cdot y^{4}} \\
& =\frac{15}{48} x^{(4+3)-5} y^{(3+5)-4} \\
& =\frac{5 x^{2} y^{4}}{16}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 x^{6} y^{4}}{x_{0} x^{8}} \cdot \frac{4^{2} x^{2} y^{2}}{3 y^{2}} & =\frac{2 \cdot 4 \cdot x^{6} \cdot x^{2} \cdot y^{4} \cdot y^{3}}{6 \cdot 12 \cdot x^{3} \cdot y^{5}} \\
& =\frac{8}{72} x^{(6+2)-3} y^{(4+3)-5} \\
\frac{x^{5} y^{2}}{9} & =\frac{x^{5} y^{2}}{9}
\end{aligned}
$$

$$
\begin{aligned}
\frac{x^{-2} y^{3} z^{-1}}{x^{-3} y^{2}} \cdot \frac{x^{2} y^{-1} z}{z^{3}} & =x^{(-2+2)-(-3)} y^{(3-1)-2} z^{(-1+1)-3} \\
& =\frac{x^{3}}{z^{3}}
\end{aligned}
$$

