

2A. 5 (B) formulate exponential and logarithmic equations that model real-world situations, including exponential relationships written in recursive notation;
2A. 5 (D) solve exponential equations of the form $y=a b^{x}$ where a is a nonzero real number and b is greater than zero and not equal to one and single logarithmic equations having real solutions; 2A. 5 (E) determine the reasonableness of a solution to a logarithmic equation.

We will be able to solve logarithms by using the definition.

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation
- TI-84
- Laws of Exponents
- Definition of Exponential
- Definition of Logarithmic

DEFN OF EXP

$$
\begin{array}{ll}
y=b^{x} & b>0 i \\
D: R & R:(0, \infty)
\end{array}
$$

Defn of log

$$
\begin{gathered}
y=\log _{b} x \equiv b^{y}=x \\
b>0: \quad b \neq 1 \\
D:(0, \infty) \quad R: R
\end{gathered}
$$

$$
\begin{aligned}
\log _{b} 7 & =5 \\
b^{5} & =7 \\
\ln c & =3 \equiv \log _{e} c=3 \\
e^{3} & =c
\end{aligned}
$$

$$
\begin{array}{cl}
\ln \frac{1}{e^{4}}=-4 & \log _{\frac{1}{3}} \frac{1}{3}=-\frac{1}{2} \\
e^{x}=\frac{1}{e^{4}} & 9^{4}=3^{-1} \\
e^{x}=e^{-4} & 3^{2 x}=3^{-1} \\
\log _{3} 1=0 & 2 x=-1 \\
x=-\frac{1}{2}=D N E \\
5^{x}=1 & \log _{4}(-4)=0 \\
\log _{5} 5^{8}=8 & \log _{10} \sqrt{10}=\frac{1}{2} \\
5^{x}=5^{8} & 10^{x}=10^{\frac{1}{2}}
\end{array}
$$

$$
\begin{aligned}
& \log _{2} 50=5.64 \\
& \log _{2} 32=\log _{2}\left(2^{5}\right)=5 \\
& \log _{2} 64=6 \quad \quad \log _{2} 32<\log _{2} 50<\log _{2} 64
\end{aligned}
$$

