

2A. 5 (B) formulate exponential and logarithmic equations that model real-world situations, including exponential relationships written in recursive notation;
2A. 5 (D) solve exponential equations of the form $y=a b^{x}$ where a is a nonzero real number and b is greater than zero and not equal to one and single logarithmic equations having real solutions; 2A. 5 (E) determine the reasonableness of a solution to a logarithmic equation.

We will be able to expand or condense logarithms using the Laws of Logarithms.

> I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- TI-84
- Laws of Exponents
- Definition of Exponential
- Definition of Logarithmic

Laws of Logarithms

- Product:

$$
\log _{b} M N=\log _{b} M+\log _{b} N
$$

- Quotient:

$$
\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N
$$

- Power:

$$
\log _{b} M^{k}=k \log _{b} M
$$

- Change of Base: $\log _{b} M=\frac{\log _{a} M}{\log _{a} b}=\frac{\log M}{\log b}=\frac{\ln M}{\ln b}$

$$
\begin{aligned}
& \log 5 a b=\log 5+\log a b \\
& =\log 5+\log a+\log b \text { Procovet } \\
& \log _{5} 8 x^{3}=\log _{5} 8+\log _{5} x^{3} \quad \text { PROUNT } \\
& =\log _{5} 8+3 \log _{5} x \text { Power } \\
& \log \frac{a^{5}}{\sqrt{b^{3}}}=\log _{a} a^{5}-\log b^{\frac{3}{2}} \text { QUOTEIT } \\
& =5 \log a-\frac{3}{2} \log b \text { Power } \\
& \text { 4. } \quad \log _{2} 6^{2} x^{2} y^{3}=2 \log _{2} 6+2 \log _{2} x+3 \log _{2} y
\end{aligned}
$$

?

$$
\begin{aligned}
\log _{5} 7+3 \log _{5} x & =\log _{5} 7+\log _{5} x^{3} \quad \text { Ponce } \\
& =\log _{5} 7 x^{3} \quad \text { Proovet } \\
3 \log _{6} M-\frac{\log _{6} N}{2} & =3 \log _{6} M-\frac{1}{2} \log _{6} N \quad \text { Alc } \\
& =\log _{6} M^{3}-\log _{66} N^{\frac{1}{2}} \quad \text { Pover } \\
& =\log _{6}\left(M^{3} \sqrt{N}\right) \text { Quotient }
\end{aligned}
$$

$$
\begin{aligned}
& 2\left(\log _{3} 3 z-\log _{3} 8\right)+\frac{1}{3} \log _{3} \frac{1}{64} \\
= & =\log _{3} \frac{4^{2}}{4} \\
= & 2 \log _{3}\left(\frac{32}{8}\right)+\frac{1}{3} \log _{3} \frac{1}{64}
\end{aligned} \text { Quotient } \quad \log _{3} 4
$$

$$
=\log _{3} 4^{2}+\log _{3} \frac{1}{4}
$$

Alg

$$
\begin{gathered}
\log _{2} 25=\frac{\log 25}{\log 2}=\frac{\ln 25}{\ln 2} \\
\log _{25} \frac{25}{2}
\end{gathered}
$$

