

2A. 5 (B) formulate exponential and logarithmic equations that model real-world situations, including exponential relationships written in recursive notation;
2A. 5 (D) solve exponential equations of the form $y=a b^{x}$ where a is a nonzero real number and b is greater than zero and not equal to one and single logarithmic equations having real solutions; 2A. 5 (E) determine the reasonableness of a solution to a logarithmic equation.

We will be able to solve logarithmic equations by condensing the expression.

WHAT WE NEED:

- TI-84
- Laws of Exponents
- Definition of Exponential
- Definition of Logarithmic

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

Laws of Exponentials

$$
\begin{aligned}
& a^{m} a^{n}=a^{m+n} \\
& \frac{a^{m}}{a^{n}}=a^{m-n}
\end{aligned}
$$

$$
a^{-m}=\frac{1}{a^{m}}
$$

$$
\text { If } a^{m}=a^{n} \text { then } m=n \quad \log _{b} M^{k}=k \log _{b} M
$$

If $\log _{b} M=\log _{b} N$ then $M=N$

$$
\begin{aligned}
\log _{2} x & =2 \log _{2} 3+\log _{2} 5 \\
\log _{2} x & =\log _{2} 3^{2}+\log _{2} 5 \\
\log _{2} x & =\log _{2} 45 \\
x & =45
\end{aligned}
$$

$$
\begin{gathered}
3 \log _{2} x=\log _{2} 8 \\
\log _{2} x^{3}=\log _{2} 8 \\
x^{3}=8 \\
\left(x^{3}\right)^{\frac{1}{3}}=8^{\frac{1}{3}} \\
x=2
\end{gathered}
$$

$$
\begin{aligned}
\log _{7}(3 x+5) & =\log _{7}(8 x-12) \\
3 x+5 & =8 x-12 \\
5 x & =17 \\
x & =\frac{17}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \log _{2}(2 x-1)-\log _{2}(x+5)=\frac{1}{2} \log _{2} 36-2 \log _{2} 2 \\
&=\log _{2} 36_{6}^{\frac{1}{2}}-\log _{2} 2 \\
& \log _{2}\left(\frac{2 x-1}{x+5}\right) \\
&=\log _{2}\left(\frac{63}{4}\left(\frac{63}{4}\right)\right. \\
& \frac{2 x-1}{x+5} \frac{3}{2} \\
& 3 x+15=4 x-2 \\
& x=17
\end{aligned}
$$

$336-2 \log _{2} 2$
$26^{\frac{1}{2}}-\log _{2} 2$
$63 \quad 4$

$$
\begin{aligned}
& \log _{7}(8(-2)+20) \quad \log _{7}(-2+6) \\
& \log _{7} 4=\log _{7} 4 \\
& \log _{7}(8 x+20)=\log _{7}(x+6) \\
& 8 x+20=x+6 \\
& 7 x=-14 \\
& x=-2
\end{aligned}
$$

