BOARD NOTES

26 FEBRUARY 2020

 \square

 \mathbf{a}

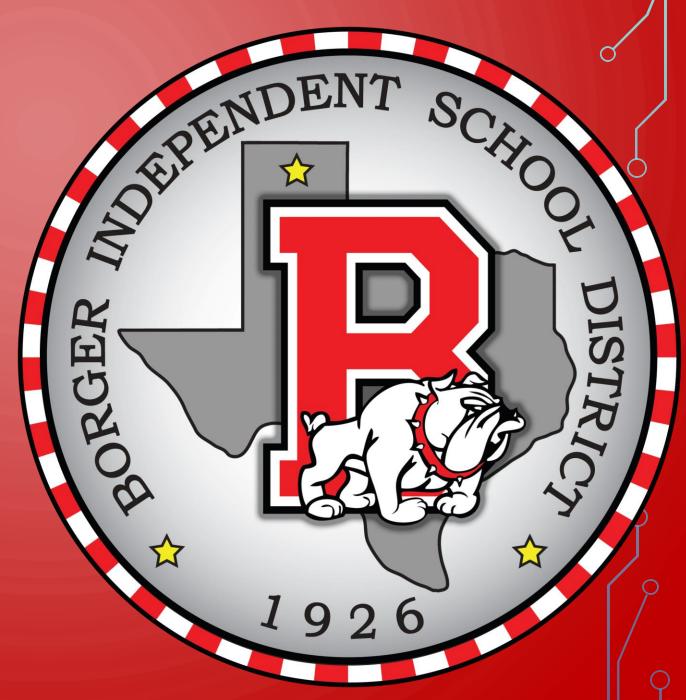
Q

B

 \bigcirc

 \mathbb{O}

Q



2A.5 (B) formulate exponential and logarithmic equations that model real-world situations, including exponential relationships written in recursive notation;

2A.5 (D) solve exponential equations of the form $y = ab^x$ where a is a nonzero real number and b is greater than zero and not equal to one and single logarithmic equations having real solutions; 2A.5 (E) determine the reasonableness of a solution to a logarithmic equation.

We will be able to solve exponential and logarithmic equations by using various methods.

WHAT WE NEED:

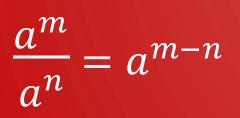
- TI-84
- Laws of Exponents
- Definition of Exponential
- Definition of Logarithmic

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

• Equation

Laws of Exponentials

$$a^m a^n = a^{m+n}$$



 $a^{-m} = \frac{1}{a^m}$

Laws of Logarithms

 $y = \log_b x \text{ if and only if } b^y = x$ $y = \log x \text{ if and only if } 10^y = x$ $y = \ln x \text{ if and only if } e^y = x$

 $\log_b MN = \log_b M + \log_b N$

$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

If $a^m = a^n$ then m = n log

$$\log_b M^k = k \log_b M$$

If $\log_b M = \log_b N$ then M = N

 $2\log_{3} x - \log_{3} 4 = \log_{3} 2 + \log_{3} 8$ $\frac{109_{3}^{2} - 109_{3}^{4} = 109_{3}^{2} + 109_{3}^{8}}{109_{3}^{4} = 109_{3}^{16}}$ Quothenty $\cdot \frac{x^2}{4} = 16.4$ Product POWER x2/2=(64)/2

 $z) \log_2 X + \log_2 8 = 8$ $loq_{z}X + loq_{z}8 = 8$ $loq_{z}8_{x} = 8$ $2^{8} = 8X$ $PRODUCT \quad X = 32$ DEFN

5) $5(4^{\times}) = 13$ $4^{x} = \frac{13}{5}$ $ln4^{X} = ln(13)$ $X = \frac{1}{104} =$

days till Xmas! $3(5^{\times})+5=17$ 3(5*)=12 $(5^{\times}) = 4$ $\frac{1}{105} = \frac{1}{104} \times \frac{1}{105} = \frac{1}{105} \times \frac{1}{105}$ X In 5 = In 4

3)

