

2A. 7 (A) add, subtract, and multiply complex numbers;

We will be able to add, subtract, multiply and divide complex numbers.

WHAT WE NEED:

- TI-84
- Definition of imaginary

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

Complex Numbers and Imaginary Numbers

The imaginary unit i is defined as

$$
i=\sqrt{-1}, \text { where } i^{2}=-1 .
$$

The set of all numbers in the form

$$
a+b i,
$$

with real numbers a and b, and i, the imaginary unit, is called the set of complex numbers.

The standard form of a complex number is

$$
a+b i .
$$

Operations on Complex Numbers

The form of a complex number $a+b i$ is like the binomial $a+b x$. To add, subtract, and multiply complex numbers, we use the same methods that we use for binomials.

Conjugate of a Complex Number

For the complex number $a+b i$, we define its complex conjugate to be a-bi.

The product of a complex number and its conjugate is a real number.

$$
\begin{aligned}
(a+b i)(a-b i) & =a(a)+a(-b i)+b i(a)+b i(-b i) \\
& =a^{2}-a b i+a b i-b^{2} i^{2} \\
& =a^{2}-b^{2}(-1) \\
& =a^{2}+b^{2}
\end{aligned}
$$

Complex Number Division

The goal of complex number division is to obtain a real number in the denominator. We multiply the numerator and denominator of a complex number quotient by the conjugate of the denominator to obtain this real number.

$$
\frac{3+7 i}{2 i} \cdot \frac{-2 i}{-2 i}=\frac{14-6 i}{4}=\frac{7-3 i}{2}
$$

$$
\frac{4+3 i}{1-2 i}
$$

$$
\begin{gathered}
\sqrt{-27}=i \sqrt{27}=3 i \sqrt{3} \\
1 / 1 \\
9 \quad 3 \\
\uparrow \\
P_{\text {erfeax }} \\
\text { SOunRe }
\end{gathered}
$$

$$
\begin{array}{rlrl}
\frac{4+3 i}{1-2 i} \cdot \frac{1+2 i}{1+2 i}=\frac{4+8 i+3 i+6 i^{2}}{1^{2}+(-2)^{2}}=\frac{-2+11 i}{5} & 3 \cdot \frac{1}{3}=1 \\
a=1 \\
b=-2 & (a+b i) \cdot \frac{1}{a+b i}=1 & 2-3 i \cdot \frac{2+3 i}{13} & =\frac{4+6 i-6 i-9 i^{2}}{13} \\
& =\frac{13}{13} \\
\frac{1}{2-3 i} \cdot \frac{2+3 i}{2+3 i} & i=-1
\end{array}
$$

