

3 MARCH 2020

))

 \mathbb{O}

6

Ó

2A.7 (A) add, subtract, and multiply complex numbers;

We will be able to add, subtract, multiply and divide complex numbers.

WHAT WE NEED:

- TI-84
- Definition of imaginary

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

• Equation

Complex Numbers and Imaginary Numbers

The **imaginary unit** *i* is defined as

$$i = \sqrt{-1}$$
, where $i^2 = -1$.

The set of all numbers in the form

a + bi,

with real numbers *a* and *b*, and *i*, the imaginary unit, is called the set of **complex numbers.**

The standard form of a complex number is

Operations on Complex Numbers

The form of a complex number a + bi is like the binomial a + bx. To add, subtract, and multiply complex numbers, we use the same methods that we use for binomials.

Conjugate of a Complex Number

For the complex number a + bi, we define its **complex conjugate** to be a - bi.

The product of a complex number and its **conjugate** is a real number.

$$(a + bi)(a - bi) = a(a) + a(-bi) + bi(a) + bi(-bi)$$
$$= a^{2} - abi + abi - b^{2}i^{2}$$
$$= a^{2} - b^{2}(-1)$$
$$= a^{2} + b^{2}$$

Complex Number Division

The goal of complex number division is to obtain a real number in the denominator. We multiply the numerator and denominator of a complex number quotient by the conjugate of the denominator to obtain this real number.

 $\frac{3+7i}{2i} \cdot \frac{-2i}{-2i} = \frac{14-6i}{4} = \frac{7-3i}{2}$ -1-27 = i-127 = 3i-13 4+3i 1-2i 9 3 PERFECT

connect and communicate mathematical ideas		
100.000		
$\frac{4+3i}{1-2i} \cdot \frac{1+2i}{1+2i} = \frac{4+8i+1}{1^2+6}$	$\frac{3i+6i^2}{(-2)^2} = \frac{-2+11i}{5}$ 3.3	$\frac{1}{3} = 1$
a = 1 b = -2 1 2+3i	$(a+bi) \cdot \frac{1}{a+bi} = 1$	$2-3i \cdot \frac{2+3i}{13} = \frac{4+6i-6i-9i^2}{13} = \frac{13}{13}$
$\frac{1}{2-3i} \cdot \frac{2+3i}{2+3i}$ $= \frac{2+3i}{13}$	i= 7-1	= 1