

2A. 7 (A) add, subtract, and multiply complex numbers;

We will be able to determine what type of factors a quadratic equation has.

WHAT WE NEED:

- TI-84
- Definition of imaginary

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

The Discriminant

We can find the solution for a quadratic equation of the form $a x^{2}+b x+c=0$ using the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The discriminant is the quantity $b^{2}-4 a c$ which appears under the radical sign in the quadratic formula. The discriminant of the quadratic equation determines the number and type of solutions.

- If the discriminant is positive, there will be two unequal real solutions.
- If the discriminant is zero, there is one real (repeated) solution.
- If the discriminant is negative, there are two imaginary solutions.

$$
\begin{aligned}
\frac{\sqrt{-8}-\sqrt{5}}{3-\sqrt{-4}} & =\frac{\sqrt{-1 \cdot 4 \cdot 2}-\sqrt{5}}{3-\sqrt{-1 \cdot 4}} \\
& =\frac{2 i \sqrt{2}-\sqrt{5}}{3-2 i} \cdot \frac{3+2 i}{3+2 i} \\
& =\frac{6 i \sqrt{2}+4 i^{2}-\sqrt{2}-3 \sqrt{5}-2 i \sqrt{5}}{3^{2}+2^{2}} \\
& =\frac{(-4 \sqrt{2}-3 \sqrt{5})+(6 \sqrt{2}-2 \sqrt{5}) i}{13}
\end{aligned}
$$

$$
\begin{gathered}
x^{2}+8=x \\
x^{2}-x+8=0 \\
a=1 \quad b=-1 \quad c=8 \\
(-1)^{2}-4(1)(8) \\
1-32=-31<0 \\
2 \mathbb{}
\end{gathered}
$$

$$
\begin{aligned}
& 6-2 x^{2}=8 x+14 \\
& -2 x^{2}-8 x-8=0 \\
& 0=2 x^{2}+8 x+8
\end{aligned}
$$

$$
a=-2 \quad b=-8 \quad c=-8
$$

$$
a=2 \quad b=8 \quad c=8
$$

$$
\begin{gathered}
(-8)^{2}-4(-2)(-8) \\
64-64=0
\end{gathered}
$$

$$
64-64=0
$$

$1 \mathbb{R}$

$$
\begin{aligned}
a & =2 b=-10 c=-5 \\
b^{2}-4 a c & =140>0
\end{aligned}
$$

$2 \mathbb{R}$ IRRATIONAL

