
P. 5 (A) evaluate finite sums and geometric series, when possible, written in sigma notation; P. 5 (B) represent arithmetic sequences and geometric sequences using recursive formulas; P. 5 (C) calculate the nth term and the nth partial sum of an arithmetic series in mathematical and realworld problems; P. 5 (D) represent arithmetic series and geometric series using sigma notation; P. 5 (E) calculate the nth term of a geometric series, the nth partial sum of a geometric series, and sum of an infinite geometric series when it exists;

We will be able to evaluate a geometric or arithmetic series.

WHAT WE NEED:

- TI-84
- Arithmetic Sequence
- Geometric Sequence

I WILL BE ABLE TO COMPLETE MY HOMEWORK GIVEN THE

- Equation

Arithmetic:

$$
\begin{aligned}
& d=a_{2}-a_{1} \\
& d=a_{3}-a_{2}
\end{aligned}
$$

Geometric:

$$
r=\frac{a_{2}}{a_{1}}
$$

$$
a_{n}=a_{1}-d(n-1)
$$

$$
r=\frac{a_{3}^{1}}{a_{2}}
$$

$$
a_{n}=a_{1}(r)^{n-1}
$$

$3,6,12, \ldots$
$a_{n}=a_{1}(r)^{n-1}$
$a_{n}=3(2)^{n-1}$
$5,15,45 \ldots$
$a_{1} \stackrel{1}{3} r$

$$
r=\frac{a_{2}}{a_{1}}=\frac{6}{3}=2
$$

2) $a_{n}=5(3)^{n-1}$
3)

$$
\begin{aligned}
a_{12} & =5(3)^{11} \\
& =885735
\end{aligned}
$$

